- #1
dark_dingo
- 2
- 0
Homework Statement
Let g(z) be a function that is analytic and non-constant on D = {|z| < 1}. Suppose that Max |g(z)| [tex]\leq[/tex] [tex]\frac{1}{r}[/tex] for all 0< r <1, |z| = r. Use the Maximum Modulus Principle (or corollary) to prove that |g(z)| < 1 for all z [tex]\in[/tex] D.
Homework Equations
http://hphotos-snc3.fbcdn.net/hs104.snc3/15146_524570240458_58700263_31202039_3403055_n.jpg
-----------------------------------------------------------------------------------
Maximum Modulus Principle:
http://hphotos-snc3.fbcdn.net/hs104.snc3/15146_524570060818_58700263_31202038_7869593_n.jpg
-----------------------------------------------------------------------------------
http://hphotos-snc3.fbcdn.net/hs084.snc3/15146_524570804328_58700263_31202043_1540731_n.jpg
The Attempt at a Solution
Not exactly sure how to start.
Last edited by a moderator: