- #1
Bling Fizikst
- 96
- 10
- Homework Statement
- see below
- Relevant Equations
- see below
Let's say the center of mass of the ring (wheel) moved a distance ##x##, tension in the thread connecting wheel and ##A## be ##T## and tension in the thread connecting ##A,B## be ##T'## :
Due to no slip condition , ##a=R\alpha## where ##R## is the assumed radius of wheel
Since ##P## is IAOR , hence we can balance torque about it :
$$\tau_P= (T-kx)R=2mR^2\alpha \implies T-kx = 2ma$$
Force eqn on wheel : $$T-f-kx=ma$$
Force eqn on loads ##m,3m##:
$$T'-T=ma$$ $$3mg-T'=3ma$$
Simplifying them gives :
$$3mg-kx=6ma$$ --(1) $$T'=3ma+kx$$
From (1) , we can say $$x=A\cos\omega t$$ where ##\omega=\sqrt{\frac{k}{6m}}##
Using this : $$T'\leq \frac{kA}{2}$$
How do i find ##A##? I am not sure i know the boundary conditions for it