- #1
marcius
- 4
- 0
I have a question here about Maxwell's equations: according to faraday's law at some point in space changing magnetic field
with time creates the curl of electric field at that point and according
to Ampere's law with Maxwell's correction changing with time electric
field or electric current density creates the rotor of magnetic field.
So those created fields are circular, so it means that they should have no
beginning, so if electric field vector changing with time at some point
created circular magnetic field at that point, this magnetic field (that
was created) should be zero (or infinity, I'm not sure, but the field is
not defined) at origin point and exist only around it. The same is if
magnetic field induces electric. So if the created circular field is zero
at origin point and exists only aroud that point, it means that both
electric and magnetic field don't exist at the same point at the same
time. So how is with electrmagnetic waves when one field creates another
and they both exist at the same point in space, the graphs of functions (
Eosin(wt+kx) and Bosin(wt+kx) ) show that, because they exist at every
point ?
with time creates the curl of electric field at that point and according
to Ampere's law with Maxwell's correction changing with time electric
field or electric current density creates the rotor of magnetic field.
So those created fields are circular, so it means that they should have no
beginning, so if electric field vector changing with time at some point
created circular magnetic field at that point, this magnetic field (that
was created) should be zero (or infinity, I'm not sure, but the field is
not defined) at origin point and exist only around it. The same is if
magnetic field induces electric. So if the created circular field is zero
at origin point and exists only aroud that point, it means that both
electric and magnetic field don't exist at the same point at the same
time. So how is with electrmagnetic waves when one field creates another
and they both exist at the same point in space, the graphs of functions (
Eosin(wt+kx) and Bosin(wt+kx) ) show that, because they exist at every
point ?
Last edited: