- #1
cahill8
- 31
- 0
Homework Statement
A group of stars in a Maxwellian distribution have a one-dimensional velocity dispersion [itex]\sigma[/itex]. The number of objects within an element [itex]d^3v[/itex] is
[itex]dN=F(v) d^3 v=\beta\hspace{2pt}Exp[-v^2/2 \sigma^2]d^3v [/itex] where [itex]\beta[/itex] is a constant
Find that the mean speed [itex]\bar{v}=\sqrt{8/\pi} \text{ }\sigma[/itex] and [itex]\bar{v^2}=3\sigma^2[/itex]
Homework Equations
I think I need to use these:
[itex]\bar{v}=<v>=\int^\infty_0 v F(v) dv[/itex]
[itex]\bar{v^2}=<v^2>=\int^\infty_0 v^2 F(v) dv[/itex]
The Attempt at a Solution
I'm trying to find the right approach, neither of the above integrals yield the correct answer. Here's what I tried:
[itex]F(v)[/itex] can be found in the equation for [itex]dN[/itex]
[itex]F(v)=\beta Exp[-v^2/2\sigma^2] [/itex]
[itex]\bar{v}=\beta \int^\infty_0 v Exp[-v^2/2\sigma^2] dv[/itex]
[itex]\bar{v}=\beta [4 \sigma^4][/itex]
which can equal [itex]\sqrt{8/\pi}[/itex] if [itex]\beta=\sqrt{2}/2\sigma^3[/itex]
However then [itex]\bar{v^2}=\beta \int^\infty_0 v^2 Exp[-v^2/2\sigma^2] dv[/itex]
[itex]\bar{v^2}=\beta [16 \sigma^6][/itex]
Putting in [itex]\beta=\sqrt{2}/2\sigma^3[/itex]:
[itex]\bar{v^2}=\sqrt{2}\hspace{3pt} 8 \sigma^3[/itex]
while the given answer above was [itex]\bar{v^2}=3\sigma^2[/itex]
Where have I gone wrong? Thanks