- #1
smallgirl
- 80
- 0
1. Hey,
I have to find Maxwells equations using the variational principle and the electromagnetic action:
[tex]S=-\intop d^{4}x\frac{1}{4}F_{\mu\nu}F^{\mu\nu}[/tex]
by using
[tex]\frac{\delta s}{\delta A_{\mu(x)}}=0
[/tex]
therefore [tex]\partial_{\mu}F^{\mu\nu}=0
[/tex]
3. I have had a go at the solution:
[tex]S[\varphi]=-\intop d^{4}y\frac{1}{4}F_{\mu\nu}F^{\mu\nu}
[/tex]
[tex]-\int d^{4}y\frac{1}{4}(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})(\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu})[/tex]
[tex]\frac{\delta s}{\delta A_{\mu(x)}}=\frac{\delta s}{\delta A_{\mu(x)}}\int d^{4}y\frac{1}{4}(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})(\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu})
[/tex]
[tex]=-\frac{1}{4}\frac{\delta s}{\delta A_{\mu(x)}}\int2(\partial_{\mu}A_{\nu}\partial^{\mu}A^{\nu}-\partial_{\mu}A_{\nu}\partial^{\nu}A^{\mu}
[/tex]
[tex]=\frac{1}{2}\int d^{4}y\eta^{\mu\alpha}\eta^{\nu\beta}\frac{\delta s}{\delta A_{\mu(x)}}(\partial_{\mu}A_{\nu}\partial_{\beta}A_{\alpha}-\partial_{\mu}A_{\nu}\partial_{\alpha}A_{\beta}
[/tex]
[tex]=\frac{1}{2}\int d^{4}y\eta^{\mu\alpha}\eta^{\nu\beta}A_{\nu}\frac{\delta s}{\delta A_{\mu(x)}}(-\partial_{\mu}\partial A_{\alpha}+\partial_{\mu}\partial_{\alpha}A_{\beta})
[/tex]
[tex]=\frac{1}{2}\int d^{4}yA_{\nu}\frac{\delta s}{\delta A_{\mu(x)}}(-\eta^{\mu\alpha}\eta^{\nu\beta}\partial_{\mu}\partial_{\beta}A_{\alpha}+\eta^{\mu\alpha}\eta^{\nu\beta}\partial_{\mu}\partial_{\alpha}A_{\beta})
[/tex]
[tex]=\frac{1}{2}\int d^{4}y\frac{\delta s}{\delta A_{\mu(x)}}(-A_{\nu}\partial_{\mu}\partial^{\nu}A^{\alpha}+A_{\nu}\partial_{\mu}\partial^{\mu}A^{\nu})
[/tex]
[tex]=\frac{1}{2}\int d^{4}yA_{\nu}\frac{\delta s}{\delta A_{\mu(x)}}(\partial_{\mu}\partial^{\nu}A^{\alpha}-\partial_{\mu}\partial^{\mu}A^{\nu})
[/tex]
[tex]=\frac{1}{2}\int d^{4}x\frac{\delta A_{\nu(y)}}{\delta A_{\mu(x)}}(\partial_{\mu}\partial^{\nu}\frac{\delta A^{\alpha(y)}}{\delta A_{\mu(x)}}-\partial_{\mu}\partial^{\mu}\frac{\delta A^{\nu(y)}}{\delta A_{\mu(x)}})
[/tex]
I don't know if what I have done is right... or not... I've continued with the problem but it leads to the wrong answer...so yes I'd like help in checking what I've done so far...
I have to find Maxwells equations using the variational principle and the electromagnetic action:
[tex]S=-\intop d^{4}x\frac{1}{4}F_{\mu\nu}F^{\mu\nu}[/tex]
by using
[tex]\frac{\delta s}{\delta A_{\mu(x)}}=0
[/tex]
therefore [tex]\partial_{\mu}F^{\mu\nu}=0
[/tex]
3. I have had a go at the solution:
[tex]S[\varphi]=-\intop d^{4}y\frac{1}{4}F_{\mu\nu}F^{\mu\nu}
[/tex]
[tex]-\int d^{4}y\frac{1}{4}(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})(\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu})[/tex]
[tex]\frac{\delta s}{\delta A_{\mu(x)}}=\frac{\delta s}{\delta A_{\mu(x)}}\int d^{4}y\frac{1}{4}(\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu})(\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu})
[/tex]
[tex]=-\frac{1}{4}\frac{\delta s}{\delta A_{\mu(x)}}\int2(\partial_{\mu}A_{\nu}\partial^{\mu}A^{\nu}-\partial_{\mu}A_{\nu}\partial^{\nu}A^{\mu}
[/tex]
[tex]=\frac{1}{2}\int d^{4}y\eta^{\mu\alpha}\eta^{\nu\beta}\frac{\delta s}{\delta A_{\mu(x)}}(\partial_{\mu}A_{\nu}\partial_{\beta}A_{\alpha}-\partial_{\mu}A_{\nu}\partial_{\alpha}A_{\beta}
[/tex]
[tex]=\frac{1}{2}\int d^{4}y\eta^{\mu\alpha}\eta^{\nu\beta}A_{\nu}\frac{\delta s}{\delta A_{\mu(x)}}(-\partial_{\mu}\partial A_{\alpha}+\partial_{\mu}\partial_{\alpha}A_{\beta})
[/tex]
[tex]=\frac{1}{2}\int d^{4}yA_{\nu}\frac{\delta s}{\delta A_{\mu(x)}}(-\eta^{\mu\alpha}\eta^{\nu\beta}\partial_{\mu}\partial_{\beta}A_{\alpha}+\eta^{\mu\alpha}\eta^{\nu\beta}\partial_{\mu}\partial_{\alpha}A_{\beta})
[/tex]
[tex]=\frac{1}{2}\int d^{4}y\frac{\delta s}{\delta A_{\mu(x)}}(-A_{\nu}\partial_{\mu}\partial^{\nu}A^{\alpha}+A_{\nu}\partial_{\mu}\partial^{\mu}A^{\nu})
[/tex]
[tex]=\frac{1}{2}\int d^{4}yA_{\nu}\frac{\delta s}{\delta A_{\mu(x)}}(\partial_{\mu}\partial^{\nu}A^{\alpha}-\partial_{\mu}\partial^{\mu}A^{\nu})
[/tex]
[tex]=\frac{1}{2}\int d^{4}x\frac{\delta A_{\nu(y)}}{\delta A_{\mu(x)}}(\partial_{\mu}\partial^{\nu}\frac{\delta A^{\alpha(y)}}{\delta A_{\mu(x)}}-\partial_{\mu}\partial^{\mu}\frac{\delta A^{\nu(y)}}{\delta A_{\mu(x)}})
[/tex]
I don't know if what I have done is right... or not... I've continued with the problem but it leads to the wrong answer...so yes I'd like help in checking what I've done so far...