- #1
kingwinner
- 1,270
- 0
Homework Statement
Let a0=0 and an+1=cos(an) for n≥0.
a) prove that a2n≤a2n+2≤a2n+3≤a2n+1 for all n≥0.
b) use mean value theorem to find a number r<1 such that |an+2-an+1| ≤ r|an-an+1| for all n≥0. Using this, prove that the sequence {an} is Cauchy.
Homework Equations
N/A
The Attempt at a Solution
a) I proved part (a) using induction. Furthermore, I showed that all terms of the sequence is bounded between 0 and 1.
b) Claim: |an+2-an+1| ≤ 0.85|an+1-an|
Assuming the claim is true, I have that
|am-an|=|am-am-1|+...+|an+1-an|≤0.85m-1|a1-a0|+...+0.85n|a1-a0|≤0.85n/(1-0.85) ->0 as n->∞. Thus, by squeeze theorem, the sequence is Cauchy.
But I am not sure how to prove the claim. If I consider a special case an+1≥an (which is clearly not true in our case), i.e. assuming the sequence is nondecreasing, then by mean value theorem, an+2-an+1=-sin(c)(an+1-an) where c must be somewhere between 0 and 1, so |sin(c)|<0.85, and the claim is proved in this special case. But the trouble is that our sequence is actually not even monotone (as shown in part a), so how can we prove the claim in our case?
Any help is much appreciated! :)