- #1
NanaToru
- 24
- 0
Homework Statement
Let f(x) = 1 - x2/3. Show that f(-1) = f(1) but there is no number c in (-1,1) such that f'(c) = 0. Why does this not contradict Rolle's Theorem?
Homework Equations
The Attempt at a Solution
f(x) = 1 - x2/3.
f(-1) = 1 - 1 = 0
f(1) = 1 - 1 = 0
f' = 2/3 x -1/3.
I don't understand why this doesn't have a number c in f'(c), or why Rolle's theorem excludes nondifferentiable points?