- #1
otg
- 30
- 0
Description of the situation
I have measured the incident number of electrons in a channel electron multiplier at different light polarization angles (a photoelectron angular distribution measurement). The events follow a poisson distribution and as far as I know the number of electron counts in a detector, C, has an error of ##\sqrt{C}##.
I have used MATLAB cftool to make a fit to the measured data using a ##\cos^2\theta## function with a few parameters, giving me a value of one of the parameters as $$b=1.82\pm 0.12.$$
It looks kind of like this (not the actual data, but they are similar).
Another way to retrieve the value of ##b## is to use ##C_0## and ##C_{90}##, hence the maximum and the minimum values of the angular distribution as seen in the attached picture. That is, the counts at ##0^\circ## and at ##90^\circ##.
Problem
Assume that e.g. ##C_0=900 \pm 30## and ##C_{90}=9 \pm 3##, and that I calculate the value $$\frac{C_0}{C_{90}}=q \pm \Delta q.$$ I then want to use ##q## to calculate $$b=\frac{1-q}{q+0.5}, $$ how do I find the full ##b \pm \Delta b## and ##q \pm \Delta q##?
Attempt at a solution
Don't know if it's an attempt, but I calculated ##q## using all four combinations of ##C_0 \pm \sqrt{C_0}## and ##C_{90} \pm \sqrt{C_{90}}## (plus/minus, plus/plus, minus/plus and minus/minus). I then got four different ##q##:s, and took the mean and calculated ##\Delta q=|q_{mean}-\max(q_i)|## for i=1:4 (or ##\min(q_i)##, depending on what gave the largest error).
I then used the four combinations of ##q## to calculate four values of ##b## and retrieve the ##\Delta b## in the same manner.
The problem is that I now get $$b=1.82 \pm 0.012.$$ Perhaps not exactly, but the issue is that when I use two single data points my error is 10% of that I get using all data points and making a fit using the full function that (in theory) should correspond to the experiment.
My intuition tells me that the error in the last method should be at least as large, possibly larger, since it uses only two values and hence should be more sensitive to variations in the value ##C##.
If anyone could help me out it would be of enormous help...
I have measured the incident number of electrons in a channel electron multiplier at different light polarization angles (a photoelectron angular distribution measurement). The events follow a poisson distribution and as far as I know the number of electron counts in a detector, C, has an error of ##\sqrt{C}##.
I have used MATLAB cftool to make a fit to the measured data using a ##\cos^2\theta## function with a few parameters, giving me a value of one of the parameters as $$b=1.82\pm 0.12.$$
It looks kind of like this (not the actual data, but they are similar).
Another way to retrieve the value of ##b## is to use ##C_0## and ##C_{90}##, hence the maximum and the minimum values of the angular distribution as seen in the attached picture. That is, the counts at ##0^\circ## and at ##90^\circ##.
Problem
Assume that e.g. ##C_0=900 \pm 30## and ##C_{90}=9 \pm 3##, and that I calculate the value $$\frac{C_0}{C_{90}}=q \pm \Delta q.$$ I then want to use ##q## to calculate $$b=\frac{1-q}{q+0.5}, $$ how do I find the full ##b \pm \Delta b## and ##q \pm \Delta q##?
Attempt at a solution
Don't know if it's an attempt, but I calculated ##q## using all four combinations of ##C_0 \pm \sqrt{C_0}## and ##C_{90} \pm \sqrt{C_{90}}## (plus/minus, plus/plus, minus/plus and minus/minus). I then got four different ##q##:s, and took the mean and calculated ##\Delta q=|q_{mean}-\max(q_i)|## for i=1:4 (or ##\min(q_i)##, depending on what gave the largest error).
I then used the four combinations of ##q## to calculate four values of ##b## and retrieve the ##\Delta b## in the same manner.
The problem is that I now get $$b=1.82 \pm 0.012.$$ Perhaps not exactly, but the issue is that when I use two single data points my error is 10% of that I get using all data points and making a fit using the full function that (in theory) should correspond to the experiment.
My intuition tells me that the error in the last method should be at least as large, possibly larger, since it uses only two values and hence should be more sensitive to variations in the value ##C##.
If anyone could help me out it would be of enormous help...