- #1
BillKet
- 313
- 29
Hello! I noticed in several papers describing high resolution vibrational measurements in diatomic molecules, such as this one, in the conclusion section, that they mention that we can search for new forces (or deviation from gravity inverse square law) between the 2 nuclei by measuring well enough the vibrational levels of the molecule. In principle, on the theoretical side, one just needs to add a correction term ##V'(r)## to the electronic Hamiltonian which gives the potential energy curve, upon which the vibrational levels are calculated.
However, the theory can't predict these curves very well (maybe at the 1% uncertainty level?). And given that these new forces are a lot smaller than 1% relative to the normal electrostatic contribution, I am not sure how we can compare experimental measurements (regardless of how accurate they are), with theoretical calculations, given that the deviations we are looking for are far below the theoretical uncertainties.
In the cases where they search for parity and/or time reversal violations, they usually search for an effect that would be zero in the absence of these violations. But in this case I am not sure how one can isolate that small contribution from the normal electrostatic interaction. Can someone point me towards some papers that discuss this in more detail (or tell me their understanding of this)? Thank you!
However, the theory can't predict these curves very well (maybe at the 1% uncertainty level?). And given that these new forces are a lot smaller than 1% relative to the normal electrostatic contribution, I am not sure how we can compare experimental measurements (regardless of how accurate they are), with theoretical calculations, given that the deviations we are looking for are far below the theoretical uncertainties.
In the cases where they search for parity and/or time reversal violations, they usually search for an effect that would be zero in the absence of these violations. But in this case I am not sure how one can isolate that small contribution from the normal electrostatic interaction. Can someone point me towards some papers that discuss this in more detail (or tell me their understanding of this)? Thank you!