MHB Mechanics- connected particles

AI Thread Summary
Two particles, A (8 kg) and B (5 kg), are connected by a string over a pulley and released from a height of 1.2 m. When particle A hits the ground without bouncing, particle B reaches a maximum height of 2.68 m, calculated by considering the upward motion after A's descent. The user struggles with part (b), which involves calculating the total time until B hits the ground after the string is cut, with an expected answer of 1.99 seconds. The calculations for part (a) included determining the acceleration and velocity of the particles, as well as the additional height B travels after A's descent. The discussion emphasizes the importance of showing work and sketching diagrams for clarity.
Shah 72
MHB
Messages
274
Reaction score
0
Two particles A and B are attached to the ends of a light inextensible string, which passes over a smooth pulley. Particle A has mass 8 kg and particle B has mass 5kg. Both the particles are held 1.2m above the ground. The system is released from rest and the particles move vertically.
a) when particle A hits the ground, it does not bounce. Find the max height reached by particle B
b) when particle A hits the ground, the string is cut. Find the total time from being released from rest until B hits the ground.
I calculated (a) and got the max height traveled by B when A hits the ground would be 1.2 +1.2 +0.27= 2.68m
Iam not getting the right ans for (b) which is 1.99 s
t1= 1.02s
When the string is cut, Tension=0N , max height reached by B =2.68m, a=-g=-10m/s^2, u=0m/s on the way down.
 
Mathematics news on Phys.org
Where did you get the 0.27 m in part a)?

We've asked you to show your work any number of times. Please tell us how you calculated a) and why you did what you did.

And always always always sketch a diagram.

-Dan
 
topsquark said:
Where did you get the 0.27 m in part a)?

We've asked you to show your work any number of times. Please tell us how you calculated a) and why you did what you did.

And always always always sketch a diagram.

-Dan
Ok I will post my working.
a)So by drawing free body diagram of both A and B, I calculated a=2.308m/s^2
Then I calculated the velocity with which A hits the ground by taking u= 0 m/s , a= 2.308m/s^2, s=1.2m, v= 2.35 m/s
B also moves up with the same velocity of 2.35 m/ s and also moves 1.2m upwards.
I need to calculate the X m it travels upwards and then comes down.
So I took u= 2.35m /s, v= 0 m/s, a=-g=-10m/s^2, s=?
I got s=0.27m
I added this 1.2+1.2+0.27 and got max height = 2.68m
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
4
Views
1K
Replies
3
Views
2K
Replies
5
Views
2K
Replies
8
Views
919
Replies
5
Views
1K
Replies
6
Views
942
Replies
1
Views
2K
Replies
1
Views
2K
Back
Top