- #1
ozkan12
- 149
- 0
Denote with ${\varPsi}_{st}$ the family of strictly nondecreasing functions ${\Psi}_{st}:[0,\infty)\to [0,\infty)$ continuous in $t=0$ such that
${\Psi}_{st}=0$ if and only if $t=0$
${\Psi}_{st}(t+s)\le {\Psi}_{st}(t)+{\Psi}_{st}(s)$.
Definition: Let $\left(X,d\right)$ be a metric space and ${\Psi}_{st} \in {\varPsi}_{st}$. Suppose that $f: X\to X$ is a $\alpha-$ admissible mapping satisfying the following condition: for each $\varepsilon >0$ there exists $\delta >0$ such that
$\epsilon\le{\Psi}_{st}\left(M\left(x,y\right)\right)<\varepsilon+\delta$ implies $\alpha\left(x,y\right){\Psi}_{st}\left(d\left(fx,fy\right)\right)<\varepsilon$
for all $x,y\in X$ where $M\left(x,y\right)=max\left\{d\left(x,y\right),d\left(x,fx\right),d\left(y,fy\right),\frac{1}{2}\left[d\left(fx,y\right)+d\left(x,fy\right)\right]\right\}$. Then f is called generalized an $\alpha-{\Psi}_{st}-$ meir-keeler contractive mapping.
Theorem: Let $\left(X,d\right)$ be a complete metric space and $f:X\to X$ a orbitally continuous generalized $\alpha-{\Psi}_{st}-$ meir-keeler contractive mapping, if there exists ${x}_{0}\in X$ such that $\alpha\left({x}_{0},f{x}_{0}\right)\ge 1$. Then, f has a fixed point. ( İn part of proof of this theorem, it is not important definition of $\alpha-$ admissible mapping.)
Proof: Define ${x}_{n+1}={f}^{n+1}{x}_{0}$ for all $n\ge0.$ We want to prove that $\lim_{{m,n}\to{\infty}}d\left({x}_{n},{x}_{m}\right)=0$. İf this not, then there exists $\varepsilon>0$ and a subsequence $\left\{{x}_{n\left(i\right)}\right\}$ of $\left\{{x}_{n}\right\}$ such that $d\left({x}_{n\left(i\right)},{x}_{n\left(i+1\right)}\right)>2\varepsilon$ (2.12). For this $\varepsilon>0$, there exists $\delta>0$ such that $\varepsilon\le{\Psi}_{st}\left(M\left(x,y\right)\right)<\varepsilon+\delta$ implies that $\alpha\left(x,y\right){\Psi}_{st}\left(d\left(fx,fy\right)\right)<\varepsilon$. Put $r=min\left\{\varepsilon,\delta\right\}$ and ${s}_{n}=d\left({x}_{n},{x}_{n+1}\right)$ for all $n\ge1$. From proposition, there exists ${n}_{0}$ such that ${s}_{n}=d\left({x}_{n},{x}_{n+1}\right)<\frac{r}{4}$ for all $n\ge{n}_{0}$ (2.13). ( I didnt write this preposition, İt is enough to know that this is true.) We get $n\left(i\right)\le n\left(i+1\right)-1$. İf $d\left({x}_{n\left(i\right)},{x}_{n\left(i+1\right)-1}\right)\le\varepsilon+\frac{r}{2}$, then
$d\left({x}_{n\left(i\right)},{x}_{n\left(i+1\right)}\right)\le d\left({x}_{n\left(i\right)},{x}_{n\left(i+1\right)-1}\right)+d\left({x}_{n\left(i+1\right)-1},{x}_{n\left(i+1\right)}\right)< \varepsilon +\frac{r}{2}+{s}_{n\left(i+1\right)-1}<\varepsilon+\frac{3r}{4}<2\varepsilon$ which contradicts the assumption (2.12). Therefore, there are values of k such that $n\left(i\right)\le k \le n\left(i+1\right)$ and $d\left({x}_{n\left(i\right)},{x}_{k}\right)>\varepsilon+\frac{r}{2}$. Now if $d\left({x}_{n\left(i\right)},{x}_{n\left(i\right)+1}\right)\ge\varepsilon+\frac{r}{2}$, then ${s}_{n\left(i\right)}=d\left({x}_{n\left(i\right)},{x}_{n\left(i\right)+1}\right)\ge\varepsilon+\frac{r}{2}>r+\frac{r}{2}>\frac{r}{4}$ which is a contradiction with (2.13). Hence, there are values of k with $n\left(i\right)\le k\le n\left(i+1\right)$ such that $d\left({x}_{n\left(i\right)},{x}_{k}\right)<\varepsilon+\frac{r}{2}.$
My questions:
1) Firstly, we get $n\left(i\right)\le n\left(i+1\right)-1$. İf $d\left({x}_{n\left(i\right)},{x}_{n\left(i+1\right)-1}\right)\le\varepsilon+\frac{r}{2}$ by using triangle inequality, we get a contradiction...And then we say that there are values of k such that $n\left(i\right)\le k \le n\left(i+1\right)$ and $d\left({x}_{n\left(i\right)},{x}_{k}\right)>\varepsilon+\frac{r}{2}$ and if $d\left({x}_{n\left(i\right)},{x}_{n\left(i\right)+1}\right)\ge\varepsilon+\frac{r}{2}$, then ${s}_{n\left(i\right)}=d\left({x}_{n\left(i\right)},{x}_{n\left(i\right)+1}\right)\ge\varepsilon+\frac{r}{2}>r+\frac{r}{2}>\frac{r}{4}$, again, we get a contradiction...By taking into consideration these cases, how we say that there are values of k with $n\left(i\right)\le k\le n\left(i+1\right)$ such that $d\left({x}_{n\left(i\right)},{x}_{k}\right)<\varepsilon+\frac{r}{2}.$ in last part, if we take $k=n\left(i+1\right)-1$ we can get a contradiction as in first part...
Please can you explain this ? thank you for your attention...best wishes...
${\Psi}_{st}=0$ if and only if $t=0$
${\Psi}_{st}(t+s)\le {\Psi}_{st}(t)+{\Psi}_{st}(s)$.
Definition: Let $\left(X,d\right)$ be a metric space and ${\Psi}_{st} \in {\varPsi}_{st}$. Suppose that $f: X\to X$ is a $\alpha-$ admissible mapping satisfying the following condition: for each $\varepsilon >0$ there exists $\delta >0$ such that
$\epsilon\le{\Psi}_{st}\left(M\left(x,y\right)\right)<\varepsilon+\delta$ implies $\alpha\left(x,y\right){\Psi}_{st}\left(d\left(fx,fy\right)\right)<\varepsilon$
for all $x,y\in X$ where $M\left(x,y\right)=max\left\{d\left(x,y\right),d\left(x,fx\right),d\left(y,fy\right),\frac{1}{2}\left[d\left(fx,y\right)+d\left(x,fy\right)\right]\right\}$. Then f is called generalized an $\alpha-{\Psi}_{st}-$ meir-keeler contractive mapping.
Theorem: Let $\left(X,d\right)$ be a complete metric space and $f:X\to X$ a orbitally continuous generalized $\alpha-{\Psi}_{st}-$ meir-keeler contractive mapping, if there exists ${x}_{0}\in X$ such that $\alpha\left({x}_{0},f{x}_{0}\right)\ge 1$. Then, f has a fixed point. ( İn part of proof of this theorem, it is not important definition of $\alpha-$ admissible mapping.)
Proof: Define ${x}_{n+1}={f}^{n+1}{x}_{0}$ for all $n\ge0.$ We want to prove that $\lim_{{m,n}\to{\infty}}d\left({x}_{n},{x}_{m}\right)=0$. İf this not, then there exists $\varepsilon>0$ and a subsequence $\left\{{x}_{n\left(i\right)}\right\}$ of $\left\{{x}_{n}\right\}$ such that $d\left({x}_{n\left(i\right)},{x}_{n\left(i+1\right)}\right)>2\varepsilon$ (2.12). For this $\varepsilon>0$, there exists $\delta>0$ such that $\varepsilon\le{\Psi}_{st}\left(M\left(x,y\right)\right)<\varepsilon+\delta$ implies that $\alpha\left(x,y\right){\Psi}_{st}\left(d\left(fx,fy\right)\right)<\varepsilon$. Put $r=min\left\{\varepsilon,\delta\right\}$ and ${s}_{n}=d\left({x}_{n},{x}_{n+1}\right)$ for all $n\ge1$. From proposition, there exists ${n}_{0}$ such that ${s}_{n}=d\left({x}_{n},{x}_{n+1}\right)<\frac{r}{4}$ for all $n\ge{n}_{0}$ (2.13). ( I didnt write this preposition, İt is enough to know that this is true.) We get $n\left(i\right)\le n\left(i+1\right)-1$. İf $d\left({x}_{n\left(i\right)},{x}_{n\left(i+1\right)-1}\right)\le\varepsilon+\frac{r}{2}$, then
$d\left({x}_{n\left(i\right)},{x}_{n\left(i+1\right)}\right)\le d\left({x}_{n\left(i\right)},{x}_{n\left(i+1\right)-1}\right)+d\left({x}_{n\left(i+1\right)-1},{x}_{n\left(i+1\right)}\right)< \varepsilon +\frac{r}{2}+{s}_{n\left(i+1\right)-1}<\varepsilon+\frac{3r}{4}<2\varepsilon$ which contradicts the assumption (2.12). Therefore, there are values of k such that $n\left(i\right)\le k \le n\left(i+1\right)$ and $d\left({x}_{n\left(i\right)},{x}_{k}\right)>\varepsilon+\frac{r}{2}$. Now if $d\left({x}_{n\left(i\right)},{x}_{n\left(i\right)+1}\right)\ge\varepsilon+\frac{r}{2}$, then ${s}_{n\left(i\right)}=d\left({x}_{n\left(i\right)},{x}_{n\left(i\right)+1}\right)\ge\varepsilon+\frac{r}{2}>r+\frac{r}{2}>\frac{r}{4}$ which is a contradiction with (2.13). Hence, there are values of k with $n\left(i\right)\le k\le n\left(i+1\right)$ such that $d\left({x}_{n\left(i\right)},{x}_{k}\right)<\varepsilon+\frac{r}{2}.$
My questions:
1) Firstly, we get $n\left(i\right)\le n\left(i+1\right)-1$. İf $d\left({x}_{n\left(i\right)},{x}_{n\left(i+1\right)-1}\right)\le\varepsilon+\frac{r}{2}$ by using triangle inequality, we get a contradiction...And then we say that there are values of k such that $n\left(i\right)\le k \le n\left(i+1\right)$ and $d\left({x}_{n\left(i\right)},{x}_{k}\right)>\varepsilon+\frac{r}{2}$ and if $d\left({x}_{n\left(i\right)},{x}_{n\left(i\right)+1}\right)\ge\varepsilon+\frac{r}{2}$, then ${s}_{n\left(i\right)}=d\left({x}_{n\left(i\right)},{x}_{n\left(i\right)+1}\right)\ge\varepsilon+\frac{r}{2}>r+\frac{r}{2}>\frac{r}{4}$, again, we get a contradiction...By taking into consideration these cases, how we say that there are values of k with $n\left(i\right)\le k\le n\left(i+1\right)$ such that $d\left({x}_{n\left(i\right)},{x}_{k}\right)<\varepsilon+\frac{r}{2}.$ in last part, if we take $k=n\left(i+1\right)-1$ we can get a contradiction as in first part...
Please can you explain this ? thank you for your attention...best wishes...