MHB Melissa's question at Yahoo Answers regarding Hooke's Law

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Hooke's law Law
AI Thread Summary
The discussion focuses on applying Hooke's Law to a bathroom scale compressed by a 150-lb person. The force constant of the scale is calculated to be 2100 lb/in, which translates to 25200 lb/ft. For a compression of 1/8 inch, the weight of a person compressing the scale is determined to be 262.5 lb. The work done in compressing the scale by 1/8 inch is computed as 175/128 ft·lb. The calculations demonstrate the practical application of Hooke's Law in real-world scenarios.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus 2 Hooke's Law Help?

A bathroom scale is compressed 1/14 in when a 150-lb person stands on it. Assuming that the scale behaves like a spring that obeys Hooke's Law, answer the following:

a.) What is the scale's force constant?b.) How much does someone who compresses the scale 1/8 in weigh?c.) How much work is done compressing the scale 1/8 in?

Any help would be greatly appreciated! :)

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Melissa,

Hooke's law is given as:

(1) $$F=-kx$$

where $x$ is the displacement of the spring from equilibrium and $k$ is a positive constant called the force constant of the spring. Solving (1) for $k$, we may write:

$$k=-\frac{F}{x}$$

We see that $k$ will have units of force per length, and in the case of this problem, this will be pounds per inch. I will also give the results in pounds per feet.

a) If we consider a compression of the spring to be a negative displacement, then using the fact that a 150 lb. person compresses the spring 1/14 in., we the find:

$$k=\frac{150}{1/14}\,\frac{\text{lb}}{\text{in}}=2100\,\frac{\text{lb}}{\text{in}}=25200\,\frac{\text{lb}}{\text{ft}}$$

b) Using (1), and the result from part a), we find:

$$F=-\left(2100\,\frac{\text{lb}}{\text{in}} \right)\left(-\frac{1}{8}\text{ in} \right)=262.5\text{ lb}$$

c) To compute the work done in compressing the spring 1/8 in, we may use:

$$W=\int_{-s}^0 F_s\,dx=-k\int_{-s}^0 x\,dx=-\frac{k}{2}\left[x^2 \right]_{-s}^0=\frac{k}{2}s^2$$

With $$s=\frac{1}{8}\text{ in}$$ we find:

$$W=\frac{2100\,\frac{\text{lb}}{\text{in}}}{2}\left(\frac{1}{8}\text{ in} \right)^2=\frac{525}{32}\text{ in}\cdot\text{lb}=\frac{175}{128}\text{ ft}\cdot\text{lb}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top