MHB Melissa's question at Yahoo Answers regarding solving a linear first order ODE

AI Thread Summary
The discussion revolves around solving the first order linear ordinary differential equation (ODE) given by df/dy + f(y) = sin(2y). The integrating factor is calculated as e^y, which allows the equation to be rewritten as the derivative of a product. After integrating both sides, integration by parts is applied to solve the integral on the right side, leading to the expression for I. The final general solution for the ODE is f(y) = (sin(2y) - 2cos(2y))/5 + c_1e^(-y), where c_1 is a constant. This solution provides a complete method for addressing the posed differential equation.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Solve this differential Equation: df/dy(t) + f(y) =sin(2y)?

df/dy(t) + f(y) =sin(2y)

I'm really stuck on how to start this differential equation. Thanks!

Here is a link to the original question:

Solve this differential Equation: df/dy(t) + f(y) =sin(2y)? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
We are given to solve the first order linear ODE:

$\displaystyle \frac{df}{dy}+f(y)=\sin(2y)$

I am assuming $\displaystyle f$ is the dependent variable and $\displaystyle y$ is the independent variable, and that the (t) is a typo.

We may begin by calculating our integrating factor $\displaystyle \mu(y)$:

$\displaystyle \mu(y)=e^{\int\,dy}=e^y$

Multiply the ODE by the integrating factor:

$\displaystyle e^y\frac{df}{dy}+f(y)e^y=e^y\sin(2y)$

Now, we may rewrite the left side as the differentiation of a product:

$\displaystyle \frac{d}{dy}\left(e^yf \right)=e^y\sin(2y)$

Integrate with respect to $\displaystyle y$:

$\displaystyle \int\frac{d}{dy}\left(e^yf \right)\,dy=\int e^y\sin(2y)\,dy$

On the right side, we may use integration by parts:

$\displaystyle u=\sin(2y)\,\therefore\,du=2\cos(2y)\,dy$

$\displaystyle dv=e^y\,dy\,\therefore\,v=e^y$

and so we may state:

$\displaystyle I=\int e^y\sin(2y)\,dy=e^y\sin(2y)-2\int e^y\cos(2y)\,dy$

Now, using integration by parts again:

$\displaystyle u=\cos(2y)\,\therefore\,du=-2\sin(2y)\,dy$

$\displaystyle dv=e^y\,dy\,\therefore\,v=e^y$

and we have:

$\displaystyle I=e^y\sin(2y)-2\left(e^y\cos(2y)+2\int e^y\sin(2y)\,dy \right)$

$\displaystyle I=e^y\sin(2y)-2e^y\cos(2y)-4I$

Solve for $\displaystyle I$:

$\displaystyle I=\frac{e^y(\sin(2y)-2\cos(2y))}{5}+c_1$

Now, back to integrating the ODE, we have:

$\displaystyle e^yf=\frac{e^y(\sin(2y)-2\cos(2y))}{5}+c_1$

Hence, the general solution is given by:

$\displaystyle f(y)=\frac{\sin(2y)-2\cos(2y)}{5}+c_1e^{-y}$
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top