- #1
happyparticle
- 465
- 21
- Homework Statement
- Mellin transform of Dirac delta function ##\delta(t-a)##
- Relevant Equations
- ##F(s)= \int_0^{\infty} \delta (t-a)e^{-st} dt##
##f(t) = \frac{1}{2 \pi i} \int_{\gamma - i \omega}^{\gamma +i \omega} F(s) e^{st} ds##
Hi,
I found Laplace transform of this Dirac delta function which is ##F(s) = e^{-st}## since ##\int_{\infty}^{-\infty} f(t) \delta (t-a) dt = f(a)##
and that ##\delta(x) = 0## if ##x \neq 0##
Then the Mellin transform
##f(t) = \frac{1}{2 \pi i} \int_{\gamma - i \omega}^{\gamma +i \omega} e^{-sa} e^{st} ds##
Since there's no singularity I can't use the residue theorem, so I'm not sure what else can I use.
I found Laplace transform of this Dirac delta function which is ##F(s) = e^{-st}## since ##\int_{\infty}^{-\infty} f(t) \delta (t-a) dt = f(a)##
and that ##\delta(x) = 0## if ##x \neq 0##
Then the Mellin transform
##f(t) = \frac{1}{2 \pi i} \int_{\gamma - i \omega}^{\gamma +i \omega} e^{-sa} e^{st} ds##
Since there's no singularity I can't use the residue theorem, so I'm not sure what else can I use.