- #1
ognik
- 643
- 2
Does\: $ \sum_{1}^{\infty} ln(1+\frac{1}{n}) $\: converge?
I tried the limit comparison test with bn=1/n and got that it diverges, which also looks right.
However I also tried the ratio test:
$ \lim_{{n}\to{\infty}} \left| \frac{{a}_{n+1}}{{a}_{n}} \right| = \lim_{{n}\to{\infty}} \left| \frac{\ln\left({1+\frac{1}{n+1}}\right)}{\ln\left({1+\frac{1}{n}}\right)} \right| = ? $
I have edited my original post because I had, thoughtlessly, used Ln a/Ln b = Ln (a-b), which is a silly mistake, of course that's not true.
Actually one should use L'Hositals rule to simplify this, which I am currently busy with :-).
I tried the limit comparison test with bn=1/n and got that it diverges, which also looks right.
However I also tried the ratio test:
$ \lim_{{n}\to{\infty}} \left| \frac{{a}_{n+1}}{{a}_{n}} \right| = \lim_{{n}\to{\infty}} \left| \frac{\ln\left({1+\frac{1}{n+1}}\right)}{\ln\left({1+\frac{1}{n}}\right)} \right| = ? $
I have edited my original post because I had, thoughtlessly, used Ln a/Ln b = Ln (a-b), which is a silly mistake, of course that's not true.
Actually one should use L'Hositals rule to simplify this, which I am currently busy with :-).
Last edited: