MHB Methods of elementary Number Theory

AI Thread Summary
The discussion focuses on solving the Diophantine equation x² + y² = z² using elementary number theory methods. It emphasizes that solving such equations involves expressing solutions in a simpler, parameterized form that allows for easy enumeration. The conversation confirms that proving the provided parameterization qualifies as a solution, though it is not the only possible parameterization. The importance of classifying and enumerating solutions is highlighted as a key aspect of solving Diophantine equations. Overall, the thread reinforces the concept that multiple parameterizations can exist for the same equation.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Cool)

I am given the following exercise:Try to solve the diophantine equation $x^2+y^2=z^2$ , using methods of elementary Number Theory.

So, do I have to write the proof of the theorem:

The non-trivial solutions of $x^2+y^2=z^2$ are given by the formulas:

$$x=\pm d(u^2-v^2), y=\pm 2duv, z=\pm d(u^2+v^2)$$

or

$$x=\pm d2uv, y=\pm d(u^2-v^2), z=\pm d(u^2+v^2)$$

? (Thinking)
 
Mathematics news on Phys.org
Yes. That's what solving an equation means, express its solutions in a simpler form, preferably one where all the solutions can be classified and easily enumerated.
 
Given a diophantine equation $P(X_1, X_2, \cdots, X_n) = 0$ over $\Bbb Q$, "solving" it means "enumerate the solutions". Now if the zero locus (the solution set) is (countably) infinite then enumeration is essentially done by parameterization, i.e., producing a set $\{(T_1, T_2, \cdots, T_k) \in \Bbb Z^k : X_i = F_i(T_1, T_2, \cdots, T_k) \, \forall i < n\}$ for some function $F_i$ which maps integers to integers when restricted to $\Bbb Z$.

So yes, proving the parameterization you mentioned would also qualify as "solving". But it is absolutely not nessesary that this is a unique parameterization -- there are a lot of ways to completely parameterize $X^2 + Y^2 + Z^2 = 0$.
 
Bacterius said:
Yes. That's what solving an equation means, express its solutions in a simpler form, preferably one where all the solutions can be classified and easily enumerated.

mathbalarka said:
Given a diophantine equation $P(X_1, X_2, \cdots, X_n) = 0$ over $\Bbb Q$, "solving" it means "enumerate the solutions". Now if the zero locus (the solution set) is (countably) infinite then enumeration is essentially done by parameterization, i.e., producing a set $\{(T_1, T_2, \cdots, T_k) \in \Bbb Z^k : X_i = F_i(T_1, T_2, \cdots, T_k) \, \forall i < n\}$ for some function $F_i$ which maps integers to integers when restricted to $\Bbb Z$.

So yes, proving the parameterization you mentioned would also qualify as "solving". But it is absolutely not nessesary that this is a unique parameterization -- there are a lot of ways to completely parameterize $X^2 + Y^2 + Z^2 = 0$.

Nice, thanks a lot! (Smile)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top