- #1
cummings12332
- 41
- 0
Homework Statement
show the set {f: ∫f(t)dt>1(integration from 0 to 1) } is an open set in the metric space ( C[0,1],||.||∞)
and if A is the subset of C[0,1] defined by A={f:0<=f<=1} is closed in the norm ||.||∞ norm.
Homework Equations
C[0,1] is f is continuous from 0 to 1.and ||.||∞ is the norm that ||f||∞ =sup | f|
The Attempt at a Solution
first one I set U= {f: ∫f(t)dt>1(integration from 0 to 1) },then fixed f in U s.t.∫f(t)dt>1 and let ∫f(t)dt=r claim B(f,r)is contained in U need to show for f' in B(f,r) then ∫f'(t)dt>1,but f' in B(f,r) means ||f'-f||∞ = sup|f'-f|<r then i don't know how to get ∫f'(t)dt>1??
and hows about the secound part of the question? should i conseder the compementary set?