- #1
Onyx
- 139
- 4
- TL;DR Summary
- How do I find the metric tensor on ##S^1## x ##S^2##?
How do I find the metric tensor on ##S^1## x ##S^2##?
What is the metric in the plane ##\mathbb R^2##?Onyx said:How do I take the product metric of the circle and sphere metrics?
Well, the plane ##\mathbb R^2## is the product ##\mathbb R \times \mathbb R## and the ##dx^2## and ##dy^2## are the metrics on each factor.Onyx said:##dx^2+dy^2## or ##dr^2+r^2d\theta^2##.
Well then I suppose for ##S^1 x S^2## it would be ##d\theta^2+d\psi^2+sin^2\theta d\phi^2##.martinbn said:Well, the plane ##\mathbb R^2## is the product ##\mathbb R \times \mathbb R## and the ##dx^2## and ##dy^2## are the metrics on each factor.