I Metric Transformation b/w Inertial Frames: Analyzing Effects

Jufa
Messages
101
Reaction score
15
TL;DR Summary
Found something weird when calculating the transformation due to a boost.
The metric tensor in an inertial frame is ## \eta = diag(-1, 1)##. Where I amb dealing with only 1-D space. The metric tranformation rule after a crtain coordinate chane is the following:

$$ g_{\mu \nu} = \frac{\partial x^\alpha}{\partial x'^{\mu }} \frac{\partial x^\beta}{\partial x'\nu } \eta_{\alpha \beta} $$
with ##x^0 = t## and ##x^1= x##

Given the particular form of ## \eta ## we obtain for ## \mu = \nu = 0 ## :

$$ g_{00} = -\Big(\frac{\partial t}{\partial t' }\Big)^2 + \Big(\frac{\partial x}{\partial t' }\Big)^2 = -\gamma ^2 + v^2\gamma^2 = \frac{v^2-1}{1-v^2/c^2} \neq -1 = \eta_{00}$$

So I get that after a Lorentz boost one of the metric's elements has changed.
Where am I wrong?
 
Last edited by a moderator:
Physics news on Phys.org
You seem to be mixing units where ##c = 1## with units where ##c \neq 1##.
 
Orodruin said:
You seem to be mixing units where ##c = 1## with units where ##c \neq 1##.
Oh yes. It is definitely that. Many thanks.
 
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...

Similar threads

Back
Top