MHB Mind-Boggling Puzzle: Solve How Many Parts Each Worker Got

  • Thread starter Thread starter Wilmer
  • Start date Start date
  • Tags Tags
    parts Puzzle
AI Thread Summary
A, B, and C work at the same speed and complete a field with D in 5 hours and with E in 6 hours. The field is divided into a two-digit square number of parts, with E receiving only 1 part, while A, B, C, and D receive integer amounts. The equations derived from their work rates and total parts lead to the conclusion that A, B, and C each receive 13 parts, D receives 9 parts, and the total number of parts is 49. The time taken to plant the field is approximately 4 hours and 47 minutes. This puzzle highlights the relationship between work rates and the division of tasks among workers.
Wilmer
Messages
303
Reaction score
0
Found this challenging:

A,B and C work at same speed.
When all 3 of them plant a field with D, the job gets done in 5 hours.
When all 3 of them plant the same field with E, the job gets done in 6 hours.
The field was divided between the 5 workers in proportion to their 5 work rates,
into a 2digit square number of parts, with E getting only 1 part.
A, B, C and D all got an integer number of parts.
How many parts did each get?
 
Mathematics news on Phys.org
But... but... you changed the numbers in your solution. :eek:

Here's my solution.

Say $A,B,C,D,E$ are the number of parts each gets.
Let $a,b,c,d,e$ be their respective work rates in parts per hour.
And let $P$ be the square 2-digit number of parts.
Then it follows that:
\begin{array}{l}
A=B=C \\
a=b=c \\
A+B+C+D+E=P \\
E=1 \\
\frac Aa = \frac Bb = \frac Cc = \frac Dd = \frac Ee \\
5(a+b+c+d)=P \\
6(a+b+c+e)=P \\
\end{array}

We can simplify this to:
$$\left\{\begin{array}{l}
3A+D+1=P \\
\frac Aa = \frac Dd = \frac 1e \\
15a+5d=P \\
18a+6e=P \\
A,D \text{ whole numbers} \\
P \text{ square 2-digit number} \\
\end{array}\right.$$

By enumerating all square 2-digit numbers, we find $A=B=C=13,\ D=9,\ P=49$ as the only solution.
It will take them $\frac{234}{49} \approx 4 \text{ hours and }47\text{ minutes}$ to plant the field.
 
Last edited:
I have a good memory, but it's short(Nerd)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top