- #1
Gold3nlily
- 42
- 0
Homework Statement
This problem is awesome! I like this chapter; Its really interesting. I think I just get a little impatient when I can't figure out the answer right away... I appreciate any help.
Miniature black holes: Left over from the big-bang beginning of the universe, tiny black holes might still wander through the universe. If one with a mass of 3 × 1011 kg (and a radius of only 4 × 10-16 m) reached Earth, at what distance from your head would its gravitational pull on you match that of Earth's? Assume free-fall acceleration ag=9.83 m/s2.
Homework Equations
F = (GMm)/r2
G = 6.67x10-11m3/Kgs2
rep = distance to Earth as seen by person
rbp = distance to black hole as seen by person
Me = mass of Earth = 5.96 x 1024 kg
Mp = mass person = not given (probably cancel out somehow)
Mb = mass black hole = 3 × 1011 kg
Rb= radius black hole = 4 × 10-16 m
Re = radius Earth = 6.38 x 106 m
The Attempt at a Solution
want to find distance when forces are equal...
Fep = (G*Me*mp)/rep2
Fbp = (G*Mb*mp)/rbp2
Fep = Fbp
(G*Me*mp)/rep2 = (G*Mb*mp)/rbp2
divide both sides by G and mp
(Me)/rep2 = (Mb)/rbp2
but I am stuck. I think:
rep = distance between Earth and person + Re
and
rbp = distance between person and B.H. + Rb
and I want to solve for "distance between person and B.H." but I don't know "distance between Earth and person". Surely it would be small, but can't be zero... would it just be the radius of the earth? (When I used this in the equation I only got the mass of the black hole as my answer, so I think the equation might be flawed.)
Any suggestions?