- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
We want to minimize the function $g(x_1, x_2)=2x_1+ x_2$ under the constraint $f(x_1, x_2)=x_1\cdot x_2=18$.
\begin{equation*}x_1\cdot x_2=18 \Rightarrow x_1=\frac{18}{x_2}\end{equation*}
\begin{equation*}\tilde{g}(x_2)=g\left (\frac{18}{x_2}, x_2\right )=2\cdot \frac{18}{x_2}+ x_2= \frac{36}{x_2}+ x_2\end{equation*}
\begin{equation*}\tilde{g}'(x_2)=-\frac{36}{x_2^2}+1=\frac{-36+x_2^2}{x_2^2}\end{equation*}
\begin{equation*}\tilde{g}'(x_2)=0 \Rightarrow \frac{-36+x_2^2}{x_2^2}=0 \Rightarrow -36+x_2^2=0 \Rightarrow x_2^2=36 \Rightarrow x_2=\pm 6\end{equation*}
\begin{equation*}\tilde{g}''(x_2)=-\frac{36}{x_2^2}=\frac{72}{x_2^3}\end{equation*}
For $x=6$ we get $\tilde{g}''(6)=\frac{72}{6^3}=\frac{1}{3}>0$ and for $x=-6$ we get $\tilde{g}''(-6)=\frac{72}{-6^3}=-\frac{1}{3}<0$.
So, $\tilde{g}$ has a minimum at $x_2=6$.
The fuction $g$ has theerfore the minimum at $\left (\frac{18}{x_2}, x_2\right ) =(3, 6)$.
In Wolfram it says that this is the maximum.
What have I done wrong? (Wondering)
We want to minimize the function $g(x_1, x_2)=2x_1+ x_2$ under the constraint $f(x_1, x_2)=x_1\cdot x_2=18$.
\begin{equation*}x_1\cdot x_2=18 \Rightarrow x_1=\frac{18}{x_2}\end{equation*}
\begin{equation*}\tilde{g}(x_2)=g\left (\frac{18}{x_2}, x_2\right )=2\cdot \frac{18}{x_2}+ x_2= \frac{36}{x_2}+ x_2\end{equation*}
\begin{equation*}\tilde{g}'(x_2)=-\frac{36}{x_2^2}+1=\frac{-36+x_2^2}{x_2^2}\end{equation*}
\begin{equation*}\tilde{g}'(x_2)=0 \Rightarrow \frac{-36+x_2^2}{x_2^2}=0 \Rightarrow -36+x_2^2=0 \Rightarrow x_2^2=36 \Rightarrow x_2=\pm 6\end{equation*}
\begin{equation*}\tilde{g}''(x_2)=-\frac{36}{x_2^2}=\frac{72}{x_2^3}\end{equation*}
For $x=6$ we get $\tilde{g}''(6)=\frac{72}{6^3}=\frac{1}{3}>0$ and for $x=-6$ we get $\tilde{g}''(-6)=\frac{72}{-6^3}=-\frac{1}{3}<0$.
So, $\tilde{g}$ has a minimum at $x_2=6$.
The fuction $g$ has theerfore the minimum at $\left (\frac{18}{x_2}, x_2\right ) =(3, 6)$.
In Wolfram it says that this is the maximum.
What have I done wrong? (Wondering)
Last edited by a moderator: