MHB Minimum of the Sum of Logarithms

AI Thread Summary
The problem involves minimizing the sum of logarithms of the form $\log_{a_1}(a_2 - \frac{1}{4}) + \log_{a_2}(a_3 - \frac{1}{4}) + \cdots + \log_{a_n}(a_1 - \frac{1}{4})$, where each $a_i$ is between $\frac{1}{4}$ and $1$. It is suggested that the minimum occurs when all variables are equal, leading to the function $f(x) = \log_x(x - \frac{1}{4})$. The derivative of this function is calculated, and it is shown to vanish at $x = \frac{1}{2}$. Thus, the minimum of the original expression is achieved when $a_1 = a_2 = \cdots = a_n = \frac{1}{2}$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the minimum of $\large \log_{a_1}\left(a_2-\dfrac{1}{4}\right)+\log_{a_2}\left(a_3-\dfrac{1}{4}\right)+\cdots+\log_{a_n}\left(a_1-\dfrac{1}{4}\right)$ where $a_1,\,a_2,\cdots,a_n$ are real numbers in the interval $\left(\dfrac{1}{4},\,1\right)$.
 
Mathematics news on Phys.org
anemone said:
Find the minimum of $\large \log_{a_1}\left(a_2-\dfrac{1}{4}\right)+\log_{a_2}\left(a_3-\dfrac{1}{4}\right)+\cdots+\log_{a_n}\left(a_1-\dfrac{1}{4}\right)$ where $a_1,\,a_2,\cdots,a_n$ are real numbers in the interval $\left(\dfrac{1}{4},\,1\right)$.

[sp]Attempt ... because changing the order of the variables the problem remains the same, the solution will be such that $ a_ {1} = a_ {2} = ... = a_ {n} = x $ and the function to be minimized is...

$\displaystyle f(x) = log_{x} (x - \frac{1}{4})\ (1)$

Proceeding in standard fashion is...

$\displaystyle f^{\ '} (x) = \frac{\frac{\ln x}{x - \frac{1}{4}} - \frac{\ln (x - \frac{1}{4})}{x}}{\ln ^{2} x}\ (2)$

... and the (2) vanishes for...

$\displaystyle x\ \ln x = (x - \frac{1}{4})\ \ln (x - \frac{1}{4}) \implies x = \frac{1}{2}\ (3)$[/sp]

Kind regards

$\chi$ $\sigma$
 
chisigma said:
[sp]Attempt ... because changing the order of the variables the problem remains the same, the solution will be such that $ a_ {1} = a_ {2} = ... = a_ {n} = x $ and the function to be minimized is...

$\displaystyle f(x) = log_{x} (x - \frac{1}{4})\ (1)$

Proceeding in standard fashion is...

$\displaystyle f^{\ '} (x) = \frac{\frac{\ln x}{x - \frac{1}{4}} - \frac{\ln (x - \frac{1}{4})}{x}}{\ln ^{2} x}\ (2)$

... and the (2) vanishes for...

$\displaystyle x\ \ln x = (x - \frac{1}{4})\ \ln (x - \frac{1}{4}) \implies x = \frac{1}{2}\ (3)$[/sp]

Kind regards

$\chi$ $\sigma$

Thanks chisigma for participating in this challenge!

And in your method,the minimum of $\large \log_{a_1}\left(a_2-\dfrac{1}{4}\right)+\log_{a_2}\left(a_3-\dfrac{1}{4}\right)+\cdots+\log_{a_n}\left(a_1-\dfrac{1}{4}\right)$ where $a_1,\,a_2,\cdots,a_n$ are real numbers in the interval $\left(\dfrac{1}{4},\,1\right)$ would be $2n$.

Here is the solution of other that I wanted to share:

Since $\log_m a$ is a decreasing function of $a$ when $0<m<1$, and since $\left(a-\dfrac{1}{2}\right)^2\ge 0$ which implies $a^2\ge a-\dfrac{1}{4}$, we have

$\large \log_{a_k}\left(a_{k+1}-\dfrac{1}{4}\right)\ge \log_{a_k} a_{k+1}^2=2\log_{a_k} a_{k+1}=2\dfrac{\log a_{k+1}}{\log a_{k}}$

It follows that

$\begin{align*}\log_{a_1}\left(a_2-\dfrac{1}{4}\right)+\log_{a_2}\left(a_3-\dfrac{1}{4}\right)+\cdots+\log_{a_n}\left(a_1-\dfrac{1}{4}\right)&\ge 2\left(\dfrac{\log a_2}{\log a_1}+\dfrac{\log a_3}{\log a_2}+\cdots+\dfrac{\log a_n}{\log a_{n-1}}+\dfrac{\log a_1}{\log a_n}\right)\\&\ge 2n\,\,\,\text{by AM-GM inequality}\end{align*}$

Equalities hold iff $a_1=a_2=\cdots=a_n=\dfrac{1}{2}$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top