- #1
gfd43tg
Gold Member
- 950
- 50
Homework Statement
Problem is posted as image
Homework Equations
The Attempt at a Solution
Hello,
I am having some confusion over what is meant by 'type in the boxes the minimum value of the expression'. Does that mean take the derivative of the function? Or does that mean the value at which the function is a minimum? That would be setting them all to zero
a) ##\underset \min{x} \hspace{0.05 in} x = ##
[itex] f(x) = x [/itex]
[itex] f'(x) = 1 [/itex]
[itex] f'(x) = 0 [/itex] at the minimum
[itex] 1 \neq 0 [/itex]
[itex] \bar{x} = -\infty [/itex]
b) ## \underset \min{x}\hspace{0.05 in}2x^2 = ##
[itex] f(x) = 2x^2 [/itex]
[itex] f'(x) = 4x [/itex]
[itex] f'(x) = 0 [/itex] at the minimum
[itex] 4x = 0 [/itex]
[itex] \bar{x} = 0 [/itex]c) ##\underset \min{x} \hspace{0.05 in}x + 2x^2 = ##
[itex] f(x) = x + 2x^2 [/itex]
[itex] f'(x) = 4x + 1 [/itex]
[itex] f'(x) = 0 [/itex] at the minimum
[itex] 4x = -1 [/itex]
[itex] \bar{x} = -0.25 [/itex]
d) ##\underset \min{x}\hspace{0.05 in} 5 - x + 2x^2 = ##
[itex] f(x) = x + 2x^2 [/itex]
[itex] f'(x) = 4x - 1 [/itex]
[itex] f'(x) = 0 [/itex] at the minimum
[itex] 4x = 1 [/itex]
[itex] \bar{x} = 0.25 [/itex]
Attachments
Last edited: