I Minkowski metric and proper time interpretation

msumm21
Messages
247
Reaction score
28
TL;DR Summary
I'm trying to learn general relativity, but misunderstanding how the metric implies that time appears to pass slower for something near a heavy mass, as viewed from something far away
Using an example of 1 space dimension and 1 time dimension, consider the metric ##d\tau^2 = a dt^2 - dx^2## near a heavy mass (##a>1##).

From what I've read a clock ticks slower near a heavy mass, as viewed from an observer far away. A clock tick would be representative of ##d\tau## right (not ##dt##)? If so, then my confused understanding is below.

If ##a## is large, then small ##dt## results in large ##d\tau##. If the far away observer's ##d\tau## is approximately ##dt##, then his clock tick, say ##dt=1## corresponds to ##d\tau >> 1## near the mass. My interpretation of this is that the clock near the mass ticks ##d\tau >> dt## ticks (it ticks more than the clock far from the mass), and hence the clock near the mass moves faster. I realize this is wrong, but not clear what part is wrong.
 
Physics news on Phys.org
Your basic assumption is wrong: ##a < 1## for the Schwarzschild metric.
 
  • Like
Likes Dale and vanhees71
The book I'm reading (General Relativity: The Theoretical Minimum by Susskind) says the metric is approximately ##d\tau^2 = (1+2gy)dt^2 - dy^2## where the grav potential is ##gy## but yes I see this doesn't jive with stuff I see on Wikipedia. I must have misunderstood what this metric was supposed to be in the first place. Does anyone know what this metric is?
 
msumm21 said:
I must have misunderstood what this metric was supposed to be in the first place. Does anyone know what this metric is?
This is a local metric, only valid in a small region. The reference is not a clock at infinity, but a clock at ##y=0##. Clocks at higher ##y## will be faster and clocks at lower ##y## will be slower compared to the reference clock.
 
  • Like
  • Informative
Likes PeterDonis, vanhees71, msumm21 and 2 others
Dale said:
This is a local metric, only valid in a small region. The reference is not a clock at infinity, but a clock at y=0. Clocks at higher y will be faster and clocks at lower y will be slower compared to the reference clock.
Oh yes I think I'm getting it now, thanks!
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...

Similar threads

Back
Top