- #1
Kairos
- 182
- 16
Something seems wrong with my use of velocity addition:
A fly of rest mass ## m_{0} ## in your reference frame (say a platform) is posed in a train passing with a velocity ## v ## relative to the platform. The fly mass is now for you ## m_{1} = m_{0} \gamma(v) ##. Now in the train the fly is flying towards the front of the train with a velocity ## v ## relative to the reference frame of the train, so ## m_{2} = m_{1} \gamma (v) = m_{0} \gamma^2 (v) =\frac{m_{0}}{1-(v/c)^2} ##. This result is different from ## m_{2} = m_{0} \gamma(V) ## where ## V ## is the composition of the train and fly velocities ## V=\frac{2 v}{1+(v/c)^2} ##, which gives if I am not mistaken ## m_{2} = m_{0} \sqrt{\frac{1+(v/c)^2}{1-(v/c)^2}} ##. What is wrong?
A fly of rest mass ## m_{0} ## in your reference frame (say a platform) is posed in a train passing with a velocity ## v ## relative to the platform. The fly mass is now for you ## m_{1} = m_{0} \gamma(v) ##. Now in the train the fly is flying towards the front of the train with a velocity ## v ## relative to the reference frame of the train, so ## m_{2} = m_{1} \gamma (v) = m_{0} \gamma^2 (v) =\frac{m_{0}}{1-(v/c)^2} ##. This result is different from ## m_{2} = m_{0} \gamma(V) ## where ## V ## is the composition of the train and fly velocities ## V=\frac{2 v}{1+(v/c)^2} ##, which gives if I am not mistaken ## m_{2} = m_{0} \sqrt{\frac{1+(v/c)^2}{1-(v/c)^2}} ##. What is wrong?