- #1
jian1
- 9
- 0
Homework Statement
Let G be a region and let {a_n} and {b_m} be two sequences of distinct points in G such that a_n != b_m for all n,m. Let S_n(z) be a singular part at a_n and let p_m be a positive integer. Show that there is a meromorphic function f on G whose only poles and zeros are {a_n} and {b_m} respectively, the singular part at z=a_n is S_n(z) and z=b_m is a zero of multiplicity p_m.
Homework Equations
The Attempt at a Solution
I understand that one can construct a function by Mittag-Leffler Theorem to have all these poles and singular parts, and I also know that by Weierstrass theorem, constructing a function with zeros is no problemo. The question is how do you construct a function with all the singular parts, poles and zeros?
My attempts don't work well despite the poles and zeros are preserved, the singular parts are not.