Model for a Qubit system using the Hamiltonion Operator

AI Thread Summary
The discussion focuses on calculating the eigenvalues and eigenvectors of a Qubit system using the Hamiltonian operator. The initial calculations for eigenvalues yielded results of λ1 = -√(B² + Δ²) and λ2 = √(B² + Δ²), but there was confusion regarding the normalization of the eigenvectors. Participants emphasized the importance of using consistent symbols and suggested utilizing LaTeX for clarity. The normalized eigenvectors were confirmed, and it was noted that the method of swapping elements and introducing a negative sign can be applied to derive normalized eigenvectors for any 2x2 matrix. The conversation concluded with a better understanding of eigenvector normalization and its implications for future calculations.
Lambda96
Messages
233
Reaction score
77
Homework Statement
Calculate the eigenvalues and eigenvectors of the Hamilton operator
Relevant Equations
none
Hi,

unfortunately, I am not sure if I have calculated the task a correctly.

Bildschirmfoto 2023-06-06 um 14.56.03.png

I calculated the eigenvalues with the usual formula ##\vec{0}=(H-\lambda I) \psi## and got the following results

$$\lambda_1=E_1=-\sqrt{B^2+\nabla^2}$$
$$\lambda_2=E_2=\sqrt{B^2+\nabla^2}$$

I'm just not sure about the normalized eigenvectors, I got the following as eigenvectors

$$\vec{\psi}_1= \left(\begin{array}{c} \frac{B- \sqrt{B^2+\triangle^2}}{\triangle} \\ 1 \end{array}\right)$$
$$\vec{\psi}_2= \left(\begin{array}{c} \frac{B+ \sqrt{B^2+\triangle^2}}{\triangle} \\ 1 \end{array}\right)$$

For the normalization, I must divide the vectors by their norm. Since writing this vector via Latex is very time-consuming, I have calculated this with Mathematica, instead of the triangle, I have simply written an A. For the eigenvector ##\vec{\psi_1}## I got the following:

Bildschirmfoto 2023-06-06 um 15.33.35.png

Since this eigenvector looks very messy, I am not sure if I have calculated the task correctly now.
 
Physics news on Phys.org
First you need to be less confusing with your symbols. Use \Delta for ##\Delta## and not ##\nabla##, ##\triangle## or ##A##.
According to our rules, to receive help, you need to show your work. The derivation of the normalized eigenvectors is straightforward but I cannot guide you to it unless I see what what you did. Try to use LaTeX, but if you must use Mathematica, did you know that you can export its equations in LaTeX?

Addendum on edit:
Your expression for ##|\psi_1\rangle## is not correct because it is not a constant times the unnormalized ##|\psi_1\rangle##. If you factor out the denominator, you are left with $$
\begin{pmatrix}
\frac{-B-\sqrt{B^2+\Delta ^2}}{\Delta} & 1
\end{pmatrix}$$while the unnormalized vector is
$$
\begin{pmatrix}
\frac{B-\sqrt{B^2+\Delta ^2}}{\Delta} & 1
\end{pmatrix}.$$I suggest that you replace the radical with a single symbol, e.g. ##R\equiv \sqrt{B^2+\Delta^2}.## It will make the algebra more transparent.
 
Last edited:
Thanks kuruman for your help 👍

Sorry, because of all the different symbols, unfortunately I still had in mind that it is the Nabla operator ##\nabla##. I had then changed all symbols by ##\triangle## and forgotten the change in the eigenvalues. But as you already said correctly, it should be ##\Delta##
kuruman said:
Try to use LaTeX, but if you must use Mathematica, did you know that you can export its equations in LaTeX?
I did not know that, thanks for the tip 👍
I have now been able to confirm by the following calculation that these are the eigenvectors of A

$$H \vec{\psi}_1=E_1 \vec{\psi}_1$$
$$H \vec{\psi}_2=E_2 \vec{\psi}_2$$

The normalized eigenvectors are then as follows.

$$\hat{\psi}_1=\frac{1}{\sqrt{\biggl( \frac{(B-\sqrt{B^2+\Delta^2})}{\Delta} \biggr)^2+1}} \cdot \left(\begin{array}{c} \frac{B-\sqrt{B^2+\Delta^2}}{\Delta} \\ 1 \end{array}\right)$$

$$\hat{\psi}_2=\frac{1}{\sqrt{\biggl( \frac{(B+\sqrt{B^2+\Delta^2})}{\Delta} \biggr)^2+1}} \cdot \left(\begin{array}{c} \frac{B+\sqrt{B^2+\Delta^2}}{\Delta} \\ 1 \end{array}\right)$$
 
This is how I would do it.

The unnormalized eigenvector corresponding to ##E_1## is $$|\psi_1\rangle=
\begin{pmatrix}
\frac{B-R}{\Delta} \\
1
\end{pmatrix}~~~R\equiv \sqrt{B^2+\Delta^2}.
$$Let ##N## be the normalization constant by which you must multiply the eigenvector. Then $$\begin{align} 1= & N^2\langle \psi_1 | \psi_1\rangle = \left(\frac{B-R}{\Delta}\right)^2+1= \frac{B^2-2BR+R^2+\Delta^2}{\Delta^2}=\frac{2R^2-2BR}{\Delta^2 }=\frac{2R(R-B)}{\Delta^2} \nonumber \\
& \implies N=\frac{\Delta}{\sqrt{2R(R-B)}}

\nonumber \end{align}$$and the normalized eigenvector is
$$|\psi_1\rangle=\frac{1}{\sqrt{2R(R-B)}}
\begin{pmatrix}
{B-R} \\
\Delta
\end{pmatrix}.
$$The normalized eigenvector corresponding to ##E_2## is obtained by swapping the column vector elements and introducing a relative minus sign. Obviously, the overall phase doesn't matter.
$$|\psi_2\rangle=\frac{1}{\sqrt{2R(R-B)}}
\begin{pmatrix}
-\Delta \\
B-R
\end{pmatrix}.$$It is immediately clear that the above vectors are orthonormal. In your expression that is not obvious. That is what I meant when I said that the substitution ##R=\sqrt{B^2+\Delta^2}## in such problems makes the algebra transparent.
 
Thanks again kuruman for your help and for the tip with the calculation of the normalization constant ##N## 👍👍.

I would have only one question, concerning the normalized eigenvector ##\hat{\psi}_2##.

I would have now calculated the normalization constant exactly as for ##\hat{\psi}_1## and got the following

$$N=\frac{\Delta}{\sqrt{2R(R+B)}}$$

I would then get the following as the normalized eigenvector.

$$\hat{\psi}_2=\frac{\Delta}{\sqrt{2R(R+B)}} \cdot \left(\begin{array}{c} B+R \\ 1 \end{array}\right)$$

Unfortunately, I don't quite understand why I also get the eigenvector when I swap the columns for the normalized eigenvector ##\hat{\psi}_1## and multiply by minus. I wanted to verify with the calculation ##H\hat{\psi}_2=E_2 \hat{\psi}_2## that it is an eigenvector of H and unfortunately I got the following.

$$H \cdot \left(\begin{array}{c} -\Delta \\ B-R \end{array}\right)=\frac{\Delta}{\sqrt{2R(R+B)}} \cdot \left(\begin{array}{c} -\Delta R\\ -\Delta^2-B(B-R) \end{array}\right)$$

The first line is correct, only with the second line I have problems.

Is it possible to determine the normalized eigenvectors of a 2x2 matrix with this trick, or only in certain cases?
 
First of all this $$\hat{\psi}_2=\frac{\Delta}{\sqrt{2R(R+B)}} \cdot \left(\begin{array}{c} B+R \\ 1 \end{array}\right)$$is dimensionally incorrect. The first element in the column vector has dimensions of energy while the second element is dimensionless. That cannot be. Also, I think you should have a term ##(R-B)## in the denominator, not ##(R+B).## Recheck your work.

Lambda96 said:
Is it possible to determine the normalized eigenvectors of a 2x2 matrix with this trick, or only in certain cases?
It is possible to use this trick with any 2×2 matrix. In the more general case where the eigenvectors have complex coefficients, let the normalized eigenvectors be
##|\psi_1\rangle=a_1|1\rangle +b_1|2\rangle~~~(|a_1|^2+|b_1|^2=1).##
##|\psi_2\rangle=a_2|1\rangle +b_2|2\rangle~~~(|a_2|^2+|b_2|^2=1).##
To ensure that they are orthogonal, you must have
$$0=\langle\psi_2|\psi_1\rangle=
\begin{pmatrix}
{a^*_2} & b^*_2
\end{pmatrix}
\begin{pmatrix}
{a_1} \\ b_1
\end{pmatrix}=a^*_2a_1+b^*_2b_1.
$$Once you obtain ##a_1## and ##b_1## for the first eigenvector, you can immediately write ##a_2\rightarrow -b^*_1## and ##b_2\rightarrow a^*_1## because then $$a^*_2a_1+b^*_2b_1\rightarrow (-b^*_1)^*a_1+ (a^*_1)^*b_1=-b_1a_1+a_1b_1=0.$$Of course, if the coefficients are real as in this case, you don't have to worry about the complex conjugates, just swap elements and introduce a relative negative sign.
 
Thanks kuruman for your help and your explanation for finding the eigenvectors of a 2x2 matrix👍👍, for future tasks, this will simplify the calculation :smile:
 
Back
Top