Modeling a mass falling from one side of the Earth to the other

  • #1
zenterix
702
84
Homework Statement
Imagine a shaft going all the way through the Earth from pole to pole along its rotation axis. Assuming the Earth to be a homogeneous ball and neglecting air drag, find

(a) the equation of motion of a body falling down into the shaft

(b) time it takes the body to reach the other end of the shaft
Relevant Equations
I started with the equation

$$F_g=\frac{Gm_1m_2}{y^2}$$
1709514540291.png


Then, by the 2nd Law

$$F_g=\frac{Gm_1m_2}{y(t)^2}=m_1y''(t)\tag{1}$$

$$y''(t)=\frac{Gm_2}{y(t)^2}\tag{2}$$

I don't know how to solve (2) but it doesn't seem to be correct.

I then thought about the following picture

1709530258053.jpeg


Consider the Earth as made up of infinitesimally small pieces of mass ##dm##.

Given a point on the shaft with height ##y## ( the red point on the ##y##-axis above), we can try to calculate the gravitational force at that point.

Collectively, the pieces of Earth between the red curve and the green part of the circle above it contribute zero to the gravitational force because of cancellation of the forces due to symmetry.

This green curve at the top is parametrized as

$$\vec{c}(\theta)=R\hat{r}(\theta)=R(\sin{\theta}\hat{i}+\cos{\theta}\hat{j})$$

The red curve is given by

$$\vec{p}(\theta) = c_x(\theta)\hat{i}+[y-(c_y(\theta)-y)]\hat{j}$$

$$=R\sin{\theta}\hat{i}+(2y-R\cos{\theta})\hat{j}$$

For a point ##(x_{dm},y_{dm})## with mass ##dm##, we can compute the light green vector in the following picture

1709531419212.png


It is ##(x_{dm},y_{dm})-(0,y)## with magnitude

$$\lVert (x_{dm},y_{dm})-(0,y)\rVert=\sqrt{x_{dm}^2+(y_{dm}-y)^2}$$

$$=\sqrt{R^2\sin^2{\theta}+(y_{dm}-y)^2}$$

The gravitational force at the point on the shaft is then

$$dF_g=\frac{Gm_1dm}{(x_{dm}^2+(y_{dm}-y)^2)^{3/2}} (x_{dm}\hat{i}+ (y_{dm}-y)\hat{j})$$

$$=\frac{Gm_1dm}{(R^2\sin^2{\theta}+(y_{dm}-y)^2)^{3/2}}(R\sin{\theta}\hat{i}+(y_{dm}-y)\hat{j})$$

Let me explain what I would like to do here.

We have a given point on the shaft with a given height ##y##.

Note that for this ##y##, the corresponding ##\theta## is

$$\cos{\theta}=\frac{y}{R}$$

$$\theta=\cos^{-1}{\frac{y}{R}}$$

Given a ##\theta## between ##0## and ##\cos^{-1}{\frac{y}{R}}##, I'd like to integrate the gravitational force ##dF_g## for ##y_{dm}## between the red curve and the bottom of the circle.

1709534282317.png


That gives the contribution from the purple line in the picture above on the right side of the circle.

By symmetry, the left side of the circle cancels the ##x## component and doubles the ##y## component of the integral.

Thus, given a ##\theta## the integral is

$$\int_{-R\cos{\theta}}^{2y-R\cos{\theta}} \frac{2Gm_1dm}{(R^2\sin^2{\theta}+(y_{dm}-y)^2)^{3/2}}((y_{dm}-y)\hat{j})$$

I'm not sure at this point what to do with the ##dm## but it should be expressed as a ##dy_{dm}##.

I have lots more calculations but I want to stop here so that this initial reasoning can be critiqued.

Does this approach make any sense?

Note that the full calculation would include:

1) Varying ##\theta## from ##0## to ##\cos^{-1}{\frac{y}{R}}##, varying an angle ##\phi## from ##0## to ##\pi## and

2) Doing a similar calculation for the light green lines in the picture above.
 
Last edited:
  • Wow
Likes PeroK
Physics news on Phys.org
  • #2
  • Like
Likes Orodruin and PeroK

FAQ: Modeling a mass falling from one side of the Earth to the other

What assumptions are made in modeling a mass falling through the Earth?

Typically, the model assumes that the Earth is a perfect sphere with uniform density. It also assumes there is no air resistance, and the tunnel through the Earth is frictionless. Additionally, it often neglects the Earth's rotation and gravitational influences from other celestial bodies.

How does gravity change as the mass falls through the Earth?

As the mass falls towards the center of the Earth, the gravitational force it experiences decreases linearly with distance from the center. This is because only the mass within the radius of the falling object contributes to the gravitational force, according to the Shell Theorem. At the center of the Earth, the gravitational force is zero.

How long would it take for the mass to travel from one side of the Earth to the other?

Assuming a frictionless tunnel and a uniform density Earth, the time it takes for the mass to travel from one side to the other is approximately 42 minutes. This is derived from the harmonic motion equations that describe the mass's oscillation through the Earth's center.

What kind of motion does the mass exhibit as it falls through the Earth?

The mass exhibits simple harmonic motion. As it falls towards the center, it accelerates due to gravity, and after passing the center, it decelerates until it reaches the other side. If there were no energy losses, the mass would continue oscillating back and forth indefinitely.

Can this theoretical model be applied to the real Earth?

In reality, the Earth is not of uniform density, has a molten core, and significant frictional forces would be present. Additionally, air resistance and the Coriolis effect due to the Earth's rotation would complicate the motion. Therefore, while the model provides interesting insights, it is not fully applicable to the real Earth without significant modifications and considerations.

Back
Top