- #1
Grooze
- 2
- 1
Hi,
New to the forum here! I'm teaching age 16-18 physics in the UK. I was wondering if anyone in here might have experience using equipment that looks like this:
https://www.eiscolabs.com/products/alpha-scattering
It's a physical analogue of Rutherford's famous experiment: roll ball bearings (representing alpha particles) down the slope, watch them get deflected by that cymbal-ish thing. Qualitatively, it's a lovely demonstration of the basic idea behind the result.
However, I was wondering if it might be possible to do a more mathematical treatment - has anyone ever tried to calculate the size of the 'nucleus' by counting backscattered particles? Intuitively I feel like we could get an upper limit on the size by just counting the fraction of particles that are backscattered over 90 degrees, but I haven't done the derivation yet, and I thought I might ask others first in case it's been done. I've looked at the original equation but it seems to have coulomb repulsion embedded in it, plus the fact that they had more than one nucleus - surely the maths will be simpler when it's just one object!
Thanks
New to the forum here! I'm teaching age 16-18 physics in the UK. I was wondering if anyone in here might have experience using equipment that looks like this:
https://www.eiscolabs.com/products/alpha-scattering
It's a physical analogue of Rutherford's famous experiment: roll ball bearings (representing alpha particles) down the slope, watch them get deflected by that cymbal-ish thing. Qualitatively, it's a lovely demonstration of the basic idea behind the result.
However, I was wondering if it might be possible to do a more mathematical treatment - has anyone ever tried to calculate the size of the 'nucleus' by counting backscattered particles? Intuitively I feel like we could get an upper limit on the size by just counting the fraction of particles that are backscattered over 90 degrees, but I haven't done the derivation yet, and I thought I might ask others first in case it's been done. I've looked at the original equation but it seems to have coulomb repulsion embedded in it, plus the fact that they had more than one nucleus - surely the maths will be simpler when it's just one object!
Thanks