- #1
JD_PM
- 1,131
- 158
- Homework Statement
- Let ##|\Psi_T \rangle ## be a state which contains transverse photons only and let
$$|\Psi'_T \rangle = \Big\{1+ a \Big[a_3^{\dagger}(\vec k) - a_0^{\dagger}(\vec k)\Big] \Big\} |\Psi_T \rangle \tag{1}$$
Where ##a## is a constant. Show that replacing ##|\Psi_T \rangle## by ##|\Psi'_T \rangle## corresponds to a gauge transformation, so that we get
$$\langle \Psi'_T | A^{\mu} (x) | \Psi'_T \rangle = \langle \Psi_T | A^{\mu} (x) + \partial^{\mu} \Lambda (x) | \Psi_T \rangle \tag{2}$$
Where
$$\Lambda (x) = \Big( \frac{2 \hbar c^2}{V \omega_k^3} \Big)^{1/2} \text{Re}(ia e^{-ik \cdot x}) \tag{3}$$
This is exercise 5.3 of Mandl & Shaw's beautiful book on QFT.
- Relevant Equations
- $$\langle \Psi'_T | A^{\mu} (x) | \Psi'_T \rangle = \langle \Psi_T | A^{\mu} (x) + \partial^{\mu} \Lambda (x) | \Psi_T \rangle \tag{2}$$
I see that this procedure helps to get rid of the two extra degrees of freedom (due to the scalar and longitudinal photons) one firstly encounters while writing the electromagnetic field theory in a Lorentz-covariant way; it indeed shows that modifying the allowed admixtures of longitudinal and scalar photons is equivalent to apply a gauge transformation between two potentials. In other words: one of these ##2## extra degrees of freedom is shown to correspond to the arbitrary choice of a Lorentz gauge.
The other extra-degree of freedom is removed thanks to the Gupta-Bleuler condition
$$\partial_{\mu} A^{\mu +} (x) | \Psi \rangle = 0$$
Which in momentum space becomes
$$[a_3(\vec k) - a_0(\vec k)] | \Psi \rangle=0$$
But let's focus on the exercise. I proceeded as follows:
We know that the Fourier-expansion of the free-electromagnetic field is ##A^{\mu} (x) = A^{\mu +} (x) + A^{\mu -} (x)##, where
$$A^{\mu +} (x) = \sum_{r \vec k} \Big( \frac{\hbar c^2}{2 V \omega_{\vec k}} \Big) \epsilon_r^{\mu} (\vec k) a_r (\vec k) e^{-i k \cdot x} \tag{4}$$
$$A^{\mu -} (x) = \sum_{r \vec k} \Big( \frac{\hbar c^2}{2 V \omega_{\vec k}} \Big) \epsilon_r^{\mu} (\vec k) a_r^{\dagger} (\vec k) e^{i k \cdot x} \tag{5}$$
The polarization vectors are defined as follows
$$\epsilon_0^{\mu} (\vec k) = n^{\mu} := (1, 0, 0, 0)$$
$$\epsilon_r^{\mu} (\vec k) = (0, \vec \epsilon_r (\vec k)), \ r=1,2,3$$
Out of ##(1)## we get
$$ \langle \Psi'_T | = \langle \Psi_T | \Big\{1+ a \Big[a_3(\vec k) - a_0(\vec k)\Big] \Big\}$$
Thus, based on ##(2)## we get
$$\langle \Psi'_T | A^{\mu} (x) | \Psi'_T \rangle = \langle \Psi_T | \Big\{1+ a \Big[a_3(\vec k) - a_0(\vec k)\Big] \Big\} A^{\mu} (x) \Big\{1+ a \Big[a_3^{\dagger}(\vec k) - a_0^{\dagger}(\vec k)\Big] \Big\} |\Psi_T \rangle$$ $$=\langle \Psi_T | A^{\mu} (x) | \Psi_T \rangle + a\langle \Psi_T | A^{\mu} (x) \Big[a_3^{\dagger}(\vec k) - a_0^{\dagger}(\vec k)\Big] | \Psi_T \rangle + a\langle \Psi_T | \Big[a_3(\vec k) - a_0(\vec k)\Big] A^{\mu} (x) | \Psi_T \rangle$$
Where we noted that the term containing ##\Big[a_3(\vec k) - a_0(\vec k)\Big] A^{\mu} (x) \Big[a_3^{\dagger}(\vec k) - a_0^{\dagger}(\vec k)\Big]## vanishes.
We only have to evaluate the terms ##a\langle \Psi_T | A^{\mu} (x) \Big[a_3^{\dagger}(\vec k) - a_0^{\dagger}(\vec k)\Big] | \Psi_T \rangle, a\langle \Psi_T | \Big[a_3(\vec k) - a_0(\vec k)\Big] A^{\mu} (x) | \Psi_T \rangle##
$$a\langle \Psi_T | A^{\mu} (x) \Big[a_3^{\dagger}(\vec k) - a_0^{\dagger}(\vec k)\Big] | \Psi_T \rangle = a\langle \Psi_T | \Big( A^{\mu +} (x) + A^{\mu -} (x) \Big) \Big[a_3^{\dagger}(\vec k) - a_0^{\dagger}(\vec k)\Big] | \Psi_T \rangle $$ $$=a \sum_{r \vec k} \Big( \frac{\hbar c^2}{2 V \omega_{\vec k}} \Big) \langle \Psi_T | (\epsilon_3^{\mu} (\vec k) + \epsilon_0^{\mu} (\vec k)) e^{-i k \cdot x} | \Psi_T \rangle$$
Where I've used the commutation relation ##[a_r (\vec k), a_s^{\dagger} (\vec k')] = \rho_r \delta_{rs} \delta_{\vec k \vec k'}## (in this specific problem ##[a_3 (\vec k), a_3^{\dagger} (\vec k)] = \rho_3 \delta_{33} \delta_{\vec k \vec k} = 1## and ##[a_0 (\vec k), a_0^{\dagger} (\vec k)] = \rho_0 \delta_{00} \delta_{\vec k \vec k} = -1##)
Analogously we get
$$a\langle \Psi_T | \Big[a_3(\vec k) - a_0(\vec k)\Big] A^{\mu} (x) | \Psi_T \rangle = a\langle \Psi_T |
\Big[a_3(\vec k) - a_0(\vec k)\Big] \Big( A^{\mu +} (x) + A^{\mu -} (x) \Big) | \Psi_T \rangle $$ $$=a \sum_{r \vec k} \Big( \frac{\hbar c^2}{2 V \omega_{\vec k}} \Big) \langle \Psi_T | (\epsilon_3^{\mu} (\vec k) + \epsilon_0^{\mu} (\vec k)) e^{i k \cdot x} | \Psi_T \rangle$$
Where I've used the same commutation relation as above.
My issue now is how to show that
$$a \sum_{r \vec k} \Big( \frac{\hbar c^2}{2 V \omega_{\vec k}} \Big) \langle \Psi_T | (\epsilon_3^{\mu} (\vec k) + \epsilon_0^{\mu} (\vec k))(e^{i k \cdot x} + e^{-i k \cdot x})| \Psi_T \rangle = \langle \Psi_T | \partial^{\mu} \Lambda (x) | \Psi_T \rangle$$
Thank you!
The other extra-degree of freedom is removed thanks to the Gupta-Bleuler condition
$$\partial_{\mu} A^{\mu +} (x) | \Psi \rangle = 0$$
Which in momentum space becomes
$$[a_3(\vec k) - a_0(\vec k)] | \Psi \rangle=0$$
But let's focus on the exercise. I proceeded as follows:
We know that the Fourier-expansion of the free-electromagnetic field is ##A^{\mu} (x) = A^{\mu +} (x) + A^{\mu -} (x)##, where
$$A^{\mu +} (x) = \sum_{r \vec k} \Big( \frac{\hbar c^2}{2 V \omega_{\vec k}} \Big) \epsilon_r^{\mu} (\vec k) a_r (\vec k) e^{-i k \cdot x} \tag{4}$$
$$A^{\mu -} (x) = \sum_{r \vec k} \Big( \frac{\hbar c^2}{2 V \omega_{\vec k}} \Big) \epsilon_r^{\mu} (\vec k) a_r^{\dagger} (\vec k) e^{i k \cdot x} \tag{5}$$
The polarization vectors are defined as follows
$$\epsilon_0^{\mu} (\vec k) = n^{\mu} := (1, 0, 0, 0)$$
$$\epsilon_r^{\mu} (\vec k) = (0, \vec \epsilon_r (\vec k)), \ r=1,2,3$$
Out of ##(1)## we get
$$ \langle \Psi'_T | = \langle \Psi_T | \Big\{1+ a \Big[a_3(\vec k) - a_0(\vec k)\Big] \Big\}$$
Thus, based on ##(2)## we get
$$\langle \Psi'_T | A^{\mu} (x) | \Psi'_T \rangle = \langle \Psi_T | \Big\{1+ a \Big[a_3(\vec k) - a_0(\vec k)\Big] \Big\} A^{\mu} (x) \Big\{1+ a \Big[a_3^{\dagger}(\vec k) - a_0^{\dagger}(\vec k)\Big] \Big\} |\Psi_T \rangle$$ $$=\langle \Psi_T | A^{\mu} (x) | \Psi_T \rangle + a\langle \Psi_T | A^{\mu} (x) \Big[a_3^{\dagger}(\vec k) - a_0^{\dagger}(\vec k)\Big] | \Psi_T \rangle + a\langle \Psi_T | \Big[a_3(\vec k) - a_0(\vec k)\Big] A^{\mu} (x) | \Psi_T \rangle$$
Where we noted that the term containing ##\Big[a_3(\vec k) - a_0(\vec k)\Big] A^{\mu} (x) \Big[a_3^{\dagger}(\vec k) - a_0^{\dagger}(\vec k)\Big]## vanishes.
We only have to evaluate the terms ##a\langle \Psi_T | A^{\mu} (x) \Big[a_3^{\dagger}(\vec k) - a_0^{\dagger}(\vec k)\Big] | \Psi_T \rangle, a\langle \Psi_T | \Big[a_3(\vec k) - a_0(\vec k)\Big] A^{\mu} (x) | \Psi_T \rangle##
$$a\langle \Psi_T | A^{\mu} (x) \Big[a_3^{\dagger}(\vec k) - a_0^{\dagger}(\vec k)\Big] | \Psi_T \rangle = a\langle \Psi_T | \Big( A^{\mu +} (x) + A^{\mu -} (x) \Big) \Big[a_3^{\dagger}(\vec k) - a_0^{\dagger}(\vec k)\Big] | \Psi_T \rangle $$ $$=a \sum_{r \vec k} \Big( \frac{\hbar c^2}{2 V \omega_{\vec k}} \Big) \langle \Psi_T | (\epsilon_3^{\mu} (\vec k) + \epsilon_0^{\mu} (\vec k)) e^{-i k \cdot x} | \Psi_T \rangle$$
Where I've used the commutation relation ##[a_r (\vec k), a_s^{\dagger} (\vec k')] = \rho_r \delta_{rs} \delta_{\vec k \vec k'}## (in this specific problem ##[a_3 (\vec k), a_3^{\dagger} (\vec k)] = \rho_3 \delta_{33} \delta_{\vec k \vec k} = 1## and ##[a_0 (\vec k), a_0^{\dagger} (\vec k)] = \rho_0 \delta_{00} \delta_{\vec k \vec k} = -1##)
Analogously we get
$$a\langle \Psi_T | \Big[a_3(\vec k) - a_0(\vec k)\Big] A^{\mu} (x) | \Psi_T \rangle = a\langle \Psi_T |
\Big[a_3(\vec k) - a_0(\vec k)\Big] \Big( A^{\mu +} (x) + A^{\mu -} (x) \Big) | \Psi_T \rangle $$ $$=a \sum_{r \vec k} \Big( \frac{\hbar c^2}{2 V \omega_{\vec k}} \Big) \langle \Psi_T | (\epsilon_3^{\mu} (\vec k) + \epsilon_0^{\mu} (\vec k)) e^{i k \cdot x} | \Psi_T \rangle$$
Where I've used the same commutation relation as above.
My issue now is how to show that
$$a \sum_{r \vec k} \Big( \frac{\hbar c^2}{2 V \omega_{\vec k}} \Big) \langle \Psi_T | (\epsilon_3^{\mu} (\vec k) + \epsilon_0^{\mu} (\vec k))(e^{i k \cdot x} + e^{-i k \cdot x})| \Psi_T \rangle = \langle \Psi_T | \partial^{\mu} \Lambda (x) | \Psi_T \rangle$$
Thank you!