- #1
- 877
- 1
I have got a heat flow partial differential equation problem that is giving me a little problem due to the direction the temperature is changing.
I have a bar (which lies along the X axis) which is initially at a uniform temperature which (for simplicity sake) we will call zero degrees.
At time, t, = 0 and onward one side of the bar is heated so that it is kept at a constant temperature of, say, 100 degrees.
I am asked to find the temperature of the bar as a function of the position, x, along the bar, and time t.
Setting up the heat flow equation, I have,
Del square u = 1/alpha * the first partial derivative of u with respect to time.
I can rearrange this and solve for a product solution of u(x, t) as X(x) * T(t). then separate out thr variables into two ordinary differential equations for X(x) and T(t) and get,
X’’ + k^2 * X = 0,
And,
T’ + (k*alpha)^2 * T = 0
The X equation is going to give me some sine and/or cosine solution, and the T equation should give me a exponential solution.
Solving for T,
T = A * e^-(K * alpha)^2 * t
Where A is just some constant.
I am ignoring the + exponent solution since this is non-physical, temperature cannot go to infinite as t goes to infinity.
But what worries me is that the equation does not satisfy the initial boundary conditions.
At t = 0, then entire rod should be at zero. And at t = infinite, the temperature of the rod should be some constant function of x (steady state solution when the two ends of the rod are held at different temperatures).
But my equation says that the temperature drops to zero as t goes to infinite and has some maximum value (A) when t = 0.
Clearly I need to modify my solution for T(t) so get it to show an increasing temperature which will approach some non-zero value.
I have a bar (which lies along the X axis) which is initially at a uniform temperature which (for simplicity sake) we will call zero degrees.
At time, t, = 0 and onward one side of the bar is heated so that it is kept at a constant temperature of, say, 100 degrees.
I am asked to find the temperature of the bar as a function of the position, x, along the bar, and time t.
Setting up the heat flow equation, I have,
Del square u = 1/alpha * the first partial derivative of u with respect to time.
I can rearrange this and solve for a product solution of u(x, t) as X(x) * T(t). then separate out thr variables into two ordinary differential equations for X(x) and T(t) and get,
X’’ + k^2 * X = 0,
And,
T’ + (k*alpha)^2 * T = 0
The X equation is going to give me some sine and/or cosine solution, and the T equation should give me a exponential solution.
Solving for T,
T = A * e^-(K * alpha)^2 * t
Where A is just some constant.
I am ignoring the + exponent solution since this is non-physical, temperature cannot go to infinite as t goes to infinity.
But what worries me is that the equation does not satisfy the initial boundary conditions.
At t = 0, then entire rod should be at zero. And at t = infinite, the temperature of the rod should be some constant function of x (steady state solution when the two ends of the rod are held at different temperatures).
But my equation says that the temperature drops to zero as t goes to infinite and has some maximum value (A) when t = 0.
Clearly I need to modify my solution for T(t) so get it to show an increasing temperature which will approach some non-zero value.