Modules with multiple operators

In summary, we have a set of 2x2 matrices that form a ring under matrix multiplication and addition. This set also forms a vector space over ##\mathbb{R}## with a defined "scalar multiplication" operation.
  • #1
cjellison
18
0
Consider the set of 2x2 matrices which form a ring under matrix multiplication and matrix addition.

[itex]\mathbb{R}^3[/itex] is module defined over this ring.

So, we have three dimensional vectors whose elements are 2x2 matrices.

My question: Can I also define another "scalar multiplication" that is over the field of real numbers (well, I know you can)...what is such a structure called? For example, I want it to do the following:

[tex]
3
\begin{pmatrix}
\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}
&
\begin{pmatrix}
1 & 1\\
1 & 1
\end{pmatrix}\\
\begin{pmatrix}
0 & 0\\
0 & 0
\end{pmatrix}
&
\begin{pmatrix}
1 & 2\\
4 & 3
\end{pmatrix}
\end{pmatrix}
=
\begin{pmatrix}
3
\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}
&
3\begin{pmatrix}
1 & 1\\
1 & 1
\end{pmatrix}\\
3\begin{pmatrix}
0 & 0\\
0 & 0
\end{pmatrix}
&
3\begin{pmatrix}
1 & 2\\
4 & 3
\end{pmatrix}
\end{pmatrix}
=
\begin{pmatrix}
\begin{pmatrix}
3a & 3b\\
3c & 3d
\end{pmatrix}
&
\begin{pmatrix}
3 & 3\\
3 & 3
\end{pmatrix}\\
\begin{pmatrix}
0 & 0\\
0 & 0
\end{pmatrix}
&
\begin{pmatrix}
3 & 6\\
12 & 9
\end{pmatrix}
\end{pmatrix}
[/tex]

in addition to:

[tex]
\begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix}
\begin{pmatrix}
\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}
&
\begin{pmatrix}
1 & 1\\
1 & 1
\end{pmatrix}\\
\begin{pmatrix}
0 & 0\\
0 & 0
\end{pmatrix}
&
\begin{pmatrix}
1 & 2\\
4 & 3
\end{pmatrix}
\end{pmatrix}
=
\begin{pmatrix}
\begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix}
\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}
&
\begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1\\
1 & 1
\end{pmatrix}\\
\begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0\\
0 & 0
\end{pmatrix}
&
\begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2\\
4 & 3
\end{pmatrix}
\end{pmatrix}
=\begin{pmatrix}
\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}
&
\begin{pmatrix}
1 & 1\\
1 & 1
\end{pmatrix}\\
\begin{pmatrix}
0 & 0\\
0 & 0
\end{pmatrix}
&
\begin{pmatrix}
1 & 2\\
4 & 3
\end{pmatrix}
\end{pmatrix}
[/tex]
 
Physics news on Phys.org
  • #2
cjellison said:
Consider the set of 2x2 matrices which form a ring under matrix multiplication and matrix addition.

[itex]\mathbb{R}^3[/itex] is module defined over this ring.
Not automatically, so you have to define the module operation. How does a ##2\times 2 ## matrix operate on a three dimensional vector?
So, we have three dimensional vectors whose elements are 2x2 matrices.
This is another scenario, namely the vector space ##\left( \mathbb{M}(2,\mathbb{R}) \right)^3##.
My question: Can I also define another "scalar multiplication" that is over the field of real numbers (well, I know you can)...what is such a structure called? For example, I want it to do the following:

[tex]
3
\begin{pmatrix}
\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}
&
\begin{pmatrix}
1 & 1\\
1 & 1
\end{pmatrix}\\
\begin{pmatrix}
0 & 0\\
0 & 0
\end{pmatrix}
&
\begin{pmatrix}
1 & 2\\
4 & 3
\end{pmatrix}
\end{pmatrix}
=
\begin{pmatrix}
3
\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}
&
3\begin{pmatrix}
1 & 1\\
1 & 1
\end{pmatrix}\\
3\begin{pmatrix}
0 & 0\\
0 & 0
\end{pmatrix}
&
3\begin{pmatrix}
1 & 2\\
4 & 3
\end{pmatrix}
\end{pmatrix}
=
\begin{pmatrix}
\begin{pmatrix}
3a & 3b\\
3c & 3d
\end{pmatrix}
&
\begin{pmatrix}
3 & 3\\
3 & 3
\end{pmatrix}\\
\begin{pmatrix}
0 & 0\\
0 & 0
\end{pmatrix}
&
\begin{pmatrix}
3 & 6\\
12 & 9
\end{pmatrix}
\end{pmatrix}
[/tex]

in addition to:

[tex]
\begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix}
\begin{pmatrix}
\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}
&
\begin{pmatrix}
1 & 1\\
1 & 1
\end{pmatrix}\\
\begin{pmatrix}
0 & 0\\
0 & 0
\end{pmatrix}
&
\begin{pmatrix}
1 & 2\\
4 & 3
\end{pmatrix}
\end{pmatrix}
=
\begin{pmatrix}
\begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix}
\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}
&
\begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1\\
1 & 1
\end{pmatrix}\\
\begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0\\
0 & 0
\end{pmatrix}
&
\begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2\\
4 & 3
\end{pmatrix}
\end{pmatrix}
=\begin{pmatrix}
\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}
&
\begin{pmatrix}
1 & 1\\
1 & 1
\end{pmatrix}\\
\begin{pmatrix}
0 & 0\\
0 & 0
\end{pmatrix}
&
\begin{pmatrix}
1 & 2\\
4 & 3
\end{pmatrix}
\end{pmatrix}
[/tex]
No problem, it is a vector space, i.e. an ##\mathbb{R}-##module.
 

Related to Modules with multiple operators

1. What are modules with multiple operators?

Modules with multiple operators refer to a type of programming concept where multiple operators are used within a single module or function. These operators can be arithmetic, logical, or comparison operators, and they are used to perform various calculations or comparisons.

2. What is the advantage of using modules with multiple operators?

The main advantage of using modules with multiple operators is that it allows for more efficient and concise code. By using multiple operators in a single module, you can perform complex calculations or comparisons in a shorter amount of code, making your program more organized and easier to read.

3. How do you create a module with multiple operators?

To create a module with multiple operators, you can simply define a function or class and then use the desired operators within the function. You can also import existing modules or libraries that contain multiple operators and use them in your code.

4. Can modules with multiple operators be used in any programming language?

Yes, modules with multiple operators can be used in most programming languages, including but not limited to Python, Java, C++, and JavaScript. The specific syntax and functionality may vary slightly between languages, but the concept remains the same.

5. What are some common use cases for modules with multiple operators?

Modules with multiple operators are commonly used in mathematical and scientific applications, such as data analysis, simulations, and modeling. They can also be used for tasks such as data manipulation, sorting, and filtering in data science and engineering projects.

Similar threads

  • Linear and Abstract Algebra
Replies
2
Views
820
  • Linear and Abstract Algebra
Replies
6
Views
936
  • Linear and Abstract Algebra
Replies
9
Views
2K
  • Linear and Abstract Algebra
Replies
10
Views
1K
  • Linear and Abstract Algebra
Replies
34
Views
2K
  • Linear and Abstract Algebra
Replies
8
Views
1K
Replies
2
Views
853
Replies
31
Views
2K
  • Linear and Abstract Algebra
Replies
14
Views
2K
  • Linear and Abstract Algebra
Replies
2
Views
977
Back
Top