- #1
gazzo
- 175
- 0
Hey, umm... I can't find an answer for this anywhere.
if we have a group [itex]\mathbb{Z}/p\mathbb{Z}[/itex] (for sufficient p) under multiplication modulo p, is divsion defined
[tex]\frac{a}{b} = ab^{-1}[/tex]
ie in [itex]\mathbb{Z}/5\mathbb{Z} = \{1,2,3,4\}[/itex]; would [itex]\frac{3}{2}[/itex] be [itex](3)(2^{-1}) \equiv (3)(3) \equiv 4[/itex]
Maybe I've completely understood modulo arithmetic
if we have a group [itex]\mathbb{Z}/p\mathbb{Z}[/itex] (for sufficient p) under multiplication modulo p, is divsion defined
[tex]\frac{a}{b} = ab^{-1}[/tex]
ie in [itex]\mathbb{Z}/5\mathbb{Z} = \{1,2,3,4\}[/itex]; would [itex]\frac{3}{2}[/itex] be [itex](3)(2^{-1}) \equiv (3)(3) \equiv 4[/itex]
Maybe I've completely understood modulo arithmetic