MHB Molly's question at Yahoo Questions regarding constrained optimization

AI Thread Summary
The discussion focuses on finding the minimum value of the function f(x,y) = 12x² + 7y² + 6xy + 8x + 2y + 4 under the constraint g(x,y) = 4x² + 2xy - 1 = 0 using Lagrange multipliers. The calculations reveal two critical points: (±1/2, 0), leading to function values of 3 and 11. The minimum value is determined to be 3 at the point (-1/2, 0). Further analysis shows that the function is unbounded as x approaches ±∞, confirming that the relative minimum is indeed the global minimum. The discussion concludes that while there is a relative maximum, it does not qualify as a global maximum.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Constrained optimization and Lagrange Multipliers? Help please!?


Hi! Please help me with the question below!

Find the minimum value of the function f(x,y)=12x^2+7y^2+6xy+8x+2y+4 subject to the constraint 4x^2+2xy=1

Minimum Value: _____

THANK YOU! :)

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Molly,

We are given the objective function:

$$f(x,y)=12x^2+7y^2+6xy+8x+2y+4$$

subject to the constraint:

$$g(x,y)=4x^2+2xy-1=0$$

Now, using Lagrange multipliers, we obtain:

$$24x+6y+8=\lambda\left(8x+2y \right)$$

$$14y+6x+2=\lambda\left(2x \right)$$

This implies:

$$\lambda=\frac{12x+3y+4}{4x+y}=\frac{7y+3x+1}{x}$$

Cross-multiplication yields:

$$12x^2+3xy+4x=28xy+12x^2+4x+7y^2+3xy+y$$

This reduces to:

$$0=28xy+7y^2+y=y(28x+7y+1)$$

This gives us two cases to consider:

i) $$y=0$$

Substituting into the constraint, we find:

$$4x^2-1=0\implies x=\pm\frac{1}{2}$$

Hence, we find the two critical points:

$$\left(0,\pm\frac{1}{2} \right)$$

ii) $$28x+7y+1=0\implies y=-\frac{28x+1}{7}$$

Substituting into the constraint, we find:

$$4x^2+2x\left(-\frac{28x+1}{7} \right)-1=0$$

Multiply through by 7:

$$28x^2-56x^2-2x-7=0$$

$$28x^2+2x+7=0$$

Observing that the discriminant is negative, we know there are no real roots, and so this case yields no critical points.

Now, we check the value of the objective function at the two critical points found in the first case:

$$f\left(-\frac{1}{2},0 \right)=3+0+0-4+0+4=3$$

$$f\left(\frac{1}{2},0 \right)=3+0+0+4+0+4=11$$

And so we may conclude that:

$$f_{\min}=f\left(-\frac{1}{2},0 \right)=3$$

We cannot conclude that the other point is a global maximum because the constraint gives us:

$$y=\frac{1}{2x}-2x$$

and substitution into the objective function gives us:

$$f(x)=28x^2+4x-7+\frac{4x+7}{4x^2}$$

which is unbounded as $$x\to\pm\infty$$

If we differentiate this function, and equate the result to zero, we obtain:

$$f'(x)=(2x+1)(2x-1)\left(28x^2+2x+7 \right)=0$$

As before, the yields the critical values:

$$x=\pm\frac{1}{2}$$

Now, the second derivative of the objective function in $x$ is:

$$f''(x)=448x^3+24x^2-2$$

And we find that:

$$f''\left(-\frac{1}{2} \right)<0$$

$$f''\left(\frac{1}{2} \right)>0$$

And so we know there is a relative minimum and a relative maximum, but given the behavior of the function at the extremes, i.e.:

$$\lim_{x\to\pm\infty}f(x)=\infty$$

We must therefore conclude that the relative minimum is the global minimum while the relative maximum is not the global maximum.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top