- #1
rnew
- 2
- 0
This was a 2 part problem...
PART A: calculate moment of inertia of a uniform sphere of mass M and radius R by using the information provided:
the moment of inertia of a thin spherical shell at radius R with mass m spinning about its axis is 2/3mR2.
I did this by integrating over thin shells with density, p, from radius -R to R.
Knowing that dI=1/2y2dm=1/2y2pdV. So I integrated 1/2y2ppiy2dz and substituting density for p=M/(4/3)piR3
the answer I got was 2/5piR2
PART B: (this was where I started having difficulty understanding..) you can calculate the moment of inertia of a layered Earth model by superposing the results for a uniform sphere. The moment of inertia of a 2 layer Earth model with a core of mass M1 and an outer shell mass M2 separated at radius R12 and a total radius of R is given by:
EQUATION #1--->
I=2/5M1R212+2/5(pm4/3piR3)R2-2/5(pm4/3piR312)R23
where pm=density of mantle.
(below is copy-pasted equation from homework sheet...not sure which one is easier to read)
I =
2
5
M1R2
12 +
2
5
(m
4
3
R3)R2 −
2
5
(m
4
3
R3
12)R2
12
It tells me to derive equation #1(above) by superposition
I have no idea where to get started on this part...
PART A: calculate moment of inertia of a uniform sphere of mass M and radius R by using the information provided:
the moment of inertia of a thin spherical shell at radius R with mass m spinning about its axis is 2/3mR2.
I did this by integrating over thin shells with density, p, from radius -R to R.
Knowing that dI=1/2y2dm=1/2y2pdV. So I integrated 1/2y2ppiy2dz and substituting density for p=M/(4/3)piR3
the answer I got was 2/5piR2
PART B: (this was where I started having difficulty understanding..) you can calculate the moment of inertia of a layered Earth model by superposing the results for a uniform sphere. The moment of inertia of a 2 layer Earth model with a core of mass M1 and an outer shell mass M2 separated at radius R12 and a total radius of R is given by:
EQUATION #1--->
I=2/5M1R212+2/5(pm4/3piR3)R2-2/5(pm4/3piR312)R23
where pm=density of mantle.
(below is copy-pasted equation from homework sheet...not sure which one is easier to read)
I =
2
5
M1R2
12 +
2
5
(m
4
3
R3)R2 −
2
5
(m
4
3
R3
12)R2
12
It tells me to derive equation #1(above) by superposition
I have no idea where to get started on this part...