- #1
Jhenrique
- 685
- 4
Greetings!
I enjoyed the definition of moment of inertia for a volume and for an area in the form of matrix. It's very enlightening!
[tex]I = \int \begin{bmatrix} y^2+z^2 & -xy & -xz\\ -yx & x^2+z^2 & -yz\\ -zx & -zy & x^2+y^2 \end{bmatrix}dxdydz[/tex]
'-> http://mathworld.wolfram.com/MomentofInertia.html
[tex]J = \int \begin{bmatrix} y^2 & -xy\\ -yx & x^2\\ \end{bmatrix}dxdy[/tex]
'-> http://mathworld.wolfram.com/AreaMomentofInertia.html
So, analogously, I'd like to know how would be the matrices of moment of inertia for curves and for surfaces...
Thx,
Jhenrique
I enjoyed the definition of moment of inertia for a volume and for an area in the form of matrix. It's very enlightening!
[tex]I = \int \begin{bmatrix} y^2+z^2 & -xy & -xz\\ -yx & x^2+z^2 & -yz\\ -zx & -zy & x^2+y^2 \end{bmatrix}dxdydz[/tex]
'-> http://mathworld.wolfram.com/MomentofInertia.html
[tex]J = \int \begin{bmatrix} y^2 & -xy\\ -yx & x^2\\ \end{bmatrix}dxdy[/tex]
'-> http://mathworld.wolfram.com/AreaMomentofInertia.html
So, analogously, I'd like to know how would be the matrices of moment of inertia for curves and for surfaces...
Thx,
Jhenrique