Moment of Inertia of Curves and Surfaces

Click For Summary
The discussion focuses on the moment of inertia for volumes and areas, highlighting its representation in matrix form. The user expresses interest in extending this concept to curves and surfaces, seeking matrices for these cases. It is noted that second moments of area are crucial for calculating stresses in beams, while second moments of volume describe body motion under external forces. There is a lack of a defined second moment for general curves, although approximations can be made for thin rods. The conversation emphasizes the application of these moments in mechanics and structural analysis.
Jhenrique
Messages
676
Reaction score
4
Greetings!

I enjoyed the definition of moment of inertia for a volume and for an area in the form of matrix. It's very enlightening!

I = \int \begin{bmatrix} y^2+z^2 & -xy & -xz\\ -yx & x^2+z^2 & -yz\\ -zx & -zy & x^2+y^2 \end{bmatrix}dxdydz

'-> http://mathworld.wolfram.com/MomentofInertia.html

J = \int \begin{bmatrix} y^2 & -xy\\ -yx & x^2\\ \end{bmatrix}dxdy

'-> http://mathworld.wolfram.com/AreaMomentofInertia.html

So, analogously, I'd like to know how would be the matrices of moment of inertia for curves and for surfaces...

Thx,

Jhenrique
 
Physics news on Phys.org
The second moments of area have a specific usage, particularly in calculating certain stresses for beams.

The second moments of a volume are used in mechanics to describe the motions of a body under the influence of external forces and moments.

I am not aware of a definition of a second moment for a general curve, unless you wish to approximate the curve as a rod of negligible radius. There are second moments defined for surfaces whose thickness is very small. These moments are used for objects which are composed of thin shells and can be derived using the definitions for the I matrix in the OP.

See:

http://en.wikipedia.org/wiki/Second_moment_of_area
http://en.wikipedia.org/wiki/List_of_area_moments_of_inertia

http://en.wikipedia.org/wiki/Mass_moment_of_inertia
http://en.wikipedia.org/wiki/List_of_moments_of_inertia
 
  • Like
Likes 1 person
For simple comparison, I think the same thought process can be followed as a block slides down a hill, - for block down hill, simple starting PE of mgh to final max KE 0.5mv^2 - comparing PE1 to max KE2 would result in finding the work friction did through the process. efficiency is just 100*KE2/PE1. If a mousetrap car travels along a flat surface, a starting PE of 0.5 k th^2 can be measured and maximum velocity of the car can also be measured. If energy efficiency is defined by...

Similar threads

  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
915
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
4K
Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 10 ·
Replies
10
Views
563
  • · Replies 2 ·
Replies
2
Views
2K