- #1
DuckAmuck
- 238
- 40
- TL;DR Summary
- Change direction of Operator
Is the following true if the momentum operator changes the direction in which it acts?
[tex] \langle \phi | p_\mu | \psi \rangle = -\langle \phi |\overleftarrow{p}_\mu| \psi \rangle [/tex]
My reasoning:
[tex] \langle \phi | p_\mu | \psi \rangle = -i\hbar \langle \phi | \partial_\mu | \psi \rangle[/tex]
[tex]\langle \phi | \partial_\mu | \psi \rangle = \int \phi^\dagger \partial_\mu \psi dx = \phi^\dagger \psi |_\text{bound} - \int \psi \partial_\mu \phi^\dagger dx [/tex]
[tex] = - \int \psi \partial_\mu \phi^\dagger dx = - \langle \phi | \overleftarrow{\partial_\mu} |\psi \rangle [/tex]
is this correct? if not, why?
[tex] \langle \phi | p_\mu | \psi \rangle = -\langle \phi |\overleftarrow{p}_\mu| \psi \rangle [/tex]
My reasoning:
[tex] \langle \phi | p_\mu | \psi \rangle = -i\hbar \langle \phi | \partial_\mu | \psi \rangle[/tex]
[tex]\langle \phi | \partial_\mu | \psi \rangle = \int \phi^\dagger \partial_\mu \psi dx = \phi^\dagger \psi |_\text{bound} - \int \psi \partial_\mu \phi^\dagger dx [/tex]
[tex] = - \int \psi \partial_\mu \phi^\dagger dx = - \langle \phi | \overleftarrow{\partial_\mu} |\psi \rangle [/tex]
is this correct? if not, why?