- #1
Fantini
Gold Member
MHB
- 268
- 0
Hi! :) I'm trying to understand the following calculation. The book Quantum Mechanics by Nouredine Zettili wants to determine the form of the momentum operator $\widehat{\vec{P}}$ in the position representation. To do so he calculates as follows: $$\begin{aligned}
\langle \vec{r} | \widehat{\vec{P}} | \psi \rangle & = \int \langle \vec{r} | \widehat{\vec{P}} | \psi \rangle \langle \vec{p} | \psi \rangle \, d^3 p \\
& = \int \vec{p} \langle \vec{r} | \vec{p} \rangle \langle \vec{p} | \psi \rangle \, d^3 p \\
& = \frac{1}{(2 \pi \hbar)^{3/2}} \int \vec{p} \exp \left( \frac{i \vec{p} \cdot \vec{r} }{\hbar} \right) \Psi(\vec{p}) \, d^3 p.
\end{aligned}$$ The momentum operator is defined as $\widehat{\vec{P}} | \vec{p} \rangle = \vec{p} | \vec{p} \rangle$.
I don't understand he's doing from the first to the second line, after applying the definition of $\langle \vec{r} | \widehat{\vec{P}} | \psi \rangle$. I know that $$\langle \vec{r} | \vec{p} \rangle = \frac{1}{(2 \pi \hbar)^{3/2}} \exp \left( \frac{i \vec{p} \cdot \vec{r}}{\hbar} \right)$$ and $$\langle \vec{p} | \psi \rangle = \Psi(\vec{p}),$$ but I don't see how he gets to that. The book claims to use that $ | \vec{p} \rangle \langle \vec{p} | = \widehat{I}$, the identity operator, and $\langle \vec{r} | \vec{p} \rangle = \ldots$.
Here's what I thought: if we use that $ | \vec{p} \rangle \langle \vec{p} | = \widehat{I}$ then $$\begin{aligned} \langle \vec{r} | \widehat{\vec{P}} | \vec{p} \rangle \langle \vec{p} | \psi \rangle & = \langle \vec{r} | \widehat{\vec{P}} \widehat{I} | \psi \rangle \\ & = \langle \vec{r} | \widehat{\vec{P}} | \psi \rangle \\ & = \langle \vec{r} | \vec{p} | \vec{p} \rangle | \psi \rangle \\ & = \vec{p} \langle \vec{r} | \vec{p} \rangle | \psi \rangle. \end{aligned}$$ That doesn't seem to be what's happening. If we don't use that $ | \vec{p} \rangle \langle \vec{p} | = \widehat{I}$, then I find an extra $| \vec{p} \rangle$ lying around.
Where am I going wrong?
\langle \vec{r} | \widehat{\vec{P}} | \psi \rangle & = \int \langle \vec{r} | \widehat{\vec{P}} | \psi \rangle \langle \vec{p} | \psi \rangle \, d^3 p \\
& = \int \vec{p} \langle \vec{r} | \vec{p} \rangle \langle \vec{p} | \psi \rangle \, d^3 p \\
& = \frac{1}{(2 \pi \hbar)^{3/2}} \int \vec{p} \exp \left( \frac{i \vec{p} \cdot \vec{r} }{\hbar} \right) \Psi(\vec{p}) \, d^3 p.
\end{aligned}$$ The momentum operator is defined as $\widehat{\vec{P}} | \vec{p} \rangle = \vec{p} | \vec{p} \rangle$.
I don't understand he's doing from the first to the second line, after applying the definition of $\langle \vec{r} | \widehat{\vec{P}} | \psi \rangle$. I know that $$\langle \vec{r} | \vec{p} \rangle = \frac{1}{(2 \pi \hbar)^{3/2}} \exp \left( \frac{i \vec{p} \cdot \vec{r}}{\hbar} \right)$$ and $$\langle \vec{p} | \psi \rangle = \Psi(\vec{p}),$$ but I don't see how he gets to that. The book claims to use that $ | \vec{p} \rangle \langle \vec{p} | = \widehat{I}$, the identity operator, and $\langle \vec{r} | \vec{p} \rangle = \ldots$.
Here's what I thought: if we use that $ | \vec{p} \rangle \langle \vec{p} | = \widehat{I}$ then $$\begin{aligned} \langle \vec{r} | \widehat{\vec{P}} | \vec{p} \rangle \langle \vec{p} | \psi \rangle & = \langle \vec{r} | \widehat{\vec{P}} \widehat{I} | \psi \rangle \\ & = \langle \vec{r} | \widehat{\vec{P}} | \psi \rangle \\ & = \langle \vec{r} | \vec{p} | \vec{p} \rangle | \psi \rangle \\ & = \vec{p} \langle \vec{r} | \vec{p} \rangle | \psi \rangle. \end{aligned}$$ That doesn't seem to be what's happening. If we don't use that $ | \vec{p} \rangle \langle \vec{p} | = \widehat{I}$, then I find an extra $| \vec{p} \rangle$ lying around.
Where am I going wrong?