- #1
WeiShan Ng
- 36
- 2
These are from Griffith's:
I am having quite a confusion over here...Does the ##\Psi## in the expression ##\langle f_p|\Psi \rangle## equals to ##\Psi(x,t)##? I understand it as ##\Psi(x,t)## being the component of the position basis to form ##\Psi##, so ##\Psi## is a state vector and ##\Psi(x,t)## is the "coefficients"?
And when it says ##\Psi## and ##\Phi## both specifying the same state of the system, should they be ##\Psi(x,t)## and ##\Phi(p,t)## (the coefficients) instead? If so we will have
$$\begin{align*} \Psi &= \int c(p) f_p \, dx =\int \left[ \int \frac{1}{\sqrt{2\pi\hbar}} e^{-ipx'/ \hbar} \Psi(x',t) \, dx' \right] \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar} \, dx \\
&= \int c(y) g_y \, dx = \int \Psi(y,t) \delta(x-y) dx = \Psi(y,t) \end{align*}$$
And if I use the Fourier transform of ##\delta(x)##
$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} \, dk$$
I get
$$\frac{1}{2\pi\hbar} \int e^{ipx/\hbar} \, dx = \delta(p) $$
which means the first line will be
$$\Psi = \int e^{-ipx'/\hbar} \Psi(x',t) \, dx' \delta(p) = \int \Psi(x',t) dx'$$
So I get ##\int \Psi(x',t) \, dx## and ##\Psi(y,t)=\Psi(x,t)## both equal to ##\Psi##?
My lecture note says thatMomentum space wave function ##\Phi(p,t)## is the Fourier transform of ##\Psi(x,t)##
$$\Phi(p,t)=\frac{1}{\sqrt{2\pi \hbar}} \int_{-\infty}^{\infty} e^{-ipx/\hbar} \Psi(x,t) \, dx$$
Position space wave function ##\Psi(x,t)## is the inverse transform of ##\Phi(p,t)##
$$\Psi(x,t)=\frac{1}{\sqrt{2\pi \hbar}} \int_{-\infty}^{\infty} e^{ipx/\hbar} \Phi(x,t) \, dp$$
And ##|\Phi(p,t)|^2 = |c(p)|^2## is the probability of getting one of the eigenvalue of the momentum operator.
Momentum eigenfunctions are ##f_p(x) = (1/\sqrt{2\pi\hbar}) exp(ipx/\hbar)##
$$c(p) = \langle f_p|\Psi \rangle = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-ipx/\hbar} \Psi(x,t) \, dx$$
while ##|\Psi(y,t)|^2 = |c(y)|^2## is the probability of getting one of the eigenvalue of the position operator.
Position eigenfunctions are ##g_y(x) = \delta(x-y)##
$$c(y)=\langle g_y|\Psi\rangle = \int_{-\infty}^{\infty} \delta(x-y) \Psi(x,t) \, dx = \Psi(y,t)$$
Physical duality of ##\Psi## and ##\Phi## specify the same state of the system and we can compute one from another
I am having quite a confusion over here...Does the ##\Psi## in the expression ##\langle f_p|\Psi \rangle## equals to ##\Psi(x,t)##? I understand it as ##\Psi(x,t)## being the component of the position basis to form ##\Psi##, so ##\Psi## is a state vector and ##\Psi(x,t)## is the "coefficients"?
And when it says ##\Psi## and ##\Phi## both specifying the same state of the system, should they be ##\Psi(x,t)## and ##\Phi(p,t)## (the coefficients) instead? If so we will have
$$\begin{align*} \Psi &= \int c(p) f_p \, dx =\int \left[ \int \frac{1}{\sqrt{2\pi\hbar}} e^{-ipx'/ \hbar} \Psi(x',t) \, dx' \right] \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar} \, dx \\
&= \int c(y) g_y \, dx = \int \Psi(y,t) \delta(x-y) dx = \Psi(y,t) \end{align*}$$
And if I use the Fourier transform of ##\delta(x)##
$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} \, dk$$
I get
$$\frac{1}{2\pi\hbar} \int e^{ipx/\hbar} \, dx = \delta(p) $$
which means the first line will be
$$\Psi = \int e^{-ipx'/\hbar} \Psi(x',t) \, dx' \delta(p) = \int \Psi(x',t) dx'$$
So I get ##\int \Psi(x',t) \, dx## and ##\Psi(y,t)=\Psi(x,t)## both equal to ##\Psi##?