- #1
maxknrd
- 5
- 0
This is more of a general question, but I've encountered this kind of exercises a lot in my current preperations for my exam:
There are two cases but the excercise is pretty much the same:
Compute
$$(1) \space \operatorname{div}\vec{A}(\vec{r}) \qquad , where \thinspace \vec{A}(\vec{r})=(\vec{a} \cdot \vec{r}) \vec{r} \qquad \vec{a} = const.$$
$$(2) \space \operatorname{div}\vec{A}(\vec{r}) \qquad , where \thinspace \vec{A}(\vec{r})=(\vec{a} \times \vec{r})\times \vec{r} \qquad \vec{a} = const.$$
My attempt to these was to always write down the expression that would come out. I will just elaborate this for (1) but I think one gets the gist of it:
$$\nabla \cdot \vec{A}(\vec{r})= \frac{\partial}{\partial x}(a_xr_x^2+a_yr_yr_x+a_zr_zr_x)+\frac{\partial}{\partial y}(...)+\frac{\partial}{\partial z}(...)$$
As one can see this is very tedious and exhausting to do, especially during the exam, also the results are very vagues, since it depends on how the derivative of r looks like. So I am wondering, if there is a more elegant way to solve these kind of exercises.
My assumption is, that there are some neat little tricks concering the problem of having a dotproduct/crossproduct of the same vector and a constant vector. Sadly I couldn't really find anything in my lecture notes, nor on the internet.
Thanks in advance :)
P.S.: I hope this is the right place to post this question since I wasn't sure if this is rather a vector analysis or a calculus question
There are two cases but the excercise is pretty much the same:
Compute
$$(1) \space \operatorname{div}\vec{A}(\vec{r}) \qquad , where \thinspace \vec{A}(\vec{r})=(\vec{a} \cdot \vec{r}) \vec{r} \qquad \vec{a} = const.$$
$$(2) \space \operatorname{div}\vec{A}(\vec{r}) \qquad , where \thinspace \vec{A}(\vec{r})=(\vec{a} \times \vec{r})\times \vec{r} \qquad \vec{a} = const.$$
My attempt to these was to always write down the expression that would come out. I will just elaborate this for (1) but I think one gets the gist of it:
$$\nabla \cdot \vec{A}(\vec{r})= \frac{\partial}{\partial x}(a_xr_x^2+a_yr_yr_x+a_zr_zr_x)+\frac{\partial}{\partial y}(...)+\frac{\partial}{\partial z}(...)$$
As one can see this is very tedious and exhausting to do, especially during the exam, also the results are very vagues, since it depends on how the derivative of r looks like. So I am wondering, if there is a more elegant way to solve these kind of exercises.
My assumption is, that there are some neat little tricks concering the problem of having a dotproduct/crossproduct of the same vector and a constant vector. Sadly I couldn't really find anything in my lecture notes, nor on the internet.
Thanks in advance :)
P.S.: I hope this is the right place to post this question since I wasn't sure if this is rather a vector analysis or a calculus question
Last edited: