A Motion of a spring that has mass

AI Thread Summary
The discussion focuses on deriving the equations of motion for a spring with a uniform mass distribution at time t=0. The initial approach involves modeling the system using discrete springs connected to masses and results in a second derivative equation for motion. The conversation then shifts to a continuous model, defining local tension and mass distribution along the spring using material coordinates. A force balance equation is established to relate tension changes to the acceleration of the mass elements. A relevant open-access paper is provided for further reading on the topic.
jaumzaum
Messages
433
Reaction score
33
Hello!

I was trying to find the equations of motion for a spring with uniform distribution of mass (uniform just in t=0, because after a while the distribution will be non-uniform).
I tried to attack this problem first in the discrete (non-continuous) way:

"Consider N springs with elastic constant k joining N masses m. Find the acceleration of the i-th mass over time)".

Then I found the following equation for the motion:

$$k(x_{i+1}-2x_{i}+x_{i-1})=ma_{i}$$
I know the first term seems like a second derivative, however I was not able to either solve this system nor extrapolate that in the continuous way.
Can you guys help me with this problem (for example, trying to help me to find the equations of motion or showing me any paper or website that explains how to find them)?
 
Physics news on Phys.org
The mass distribution remains uniform provided us specify location using a material (body) coordinate.
 
  • Like
Likes vanhees71 and Chestermiller
Following up on what Dr. D said, let L be the unstretched length of the spring, and let s be a material coordinate that runs from s = 0 at one end of the spring to s = L at the other end of the spring. Also, let x(s,t) be the location at time t of the material element situated at material location s along unstretched configuration of the spring. Then based on this, the local tension T in the spring at material location s and time t is given by $$T(s,t)=kL\left(\frac{\partial x}{\partial s}-1\right)$$ Also, the mass between material locations s and ##s+\Delta s## is given by: $$\rho \Delta s$$ where ##\rho## is the linear density of the unstretched spring. So a force balance on a short section of the spring between material coordinates s and ##s+\Delta s## becomes: $$T(s+\Delta s,t)-T(s,t)=\rho \Delta s\frac{\partial ^ 2x}{\partial t^2}$$
 
Last edited:
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top