Motion of an electron inside the cavity of a charged sphere

AI Thread Summary
The discussion centers on the motion of an electron within a cavity of a charged sphere, questioning whether the electric field inside the cavity is uniform and how this affects the electron's movement. Participants explore the concept of representing the charge distribution as two components: the complete sphere and a complementary negative charge in the cavity. It is established that the total force on the electron can be calculated, revealing that one force cancels out, resulting in a uniform field inside the cavity. The direction of the force on the electron depends on its position relative to the sphere's center and the cavity's center. The conversation emphasizes the importance of understanding the forces acting on the electron to determine its trajectory.
Zayan
Messages
63
Reaction score
7
Homework Statement
A cavity of radius r is made inside a solid sphere. The volume charge density of the remaining sphere is p. An electron (charge e, mass m) is released inside the cavity from a point P as shown in figure. The center of sphere and center of cavity are separated by a distance a. The time after which the electron again touches the sphere is
Relevant Equations
Non conducting Sphere electric field = ρr/3ε0
I know the field I don't know whether the field will be uniform inside the cavity or not. If it is, I don't understand how or why the electron will move. I got the force(considering uniform field inside the cavity) as epr/3E0. But then again I don't understand how the electron will move. If I get the trajectory I can apply kinematic equation to get the time.
1000015948.jpg
 
Physics news on Phys.org
Zayan said:
considering uniform field inside the cavity
Why would it be?

The usual trick is to represent the charge distribution as the sum of two distributions, one for the complete sphere (no cavity) and a complementary one in the cavity.
Can you write down the two resulting forces on the electron when at ##(r, \theta)## relative to the centre of the cavity?
 
haruspex said:
Why would it be?

The usual trick is to represent the charge distribution as the sum of two distributions, one for the complete sphere (no cavity) and a complementary one in the cavity.
Can you write down the two resulting forces on the electron when at ##(r, \theta)## relative to the centre of the cavity?
But the "remaining charge distribution" is already given?
 
Last edited:
Zayan said:
But the "remaining charge distribution" is already given?
Yes, so? You must have misunderstood me.
You have a uniform charge density p in what remains of the sphere. We can represent that as the sum of a uniform charge of density p over the complete sphere (cavity filled in) and a uniform charge density -p over the spherical cavity.
 
haruspex said:
Yes, so? You must have misunderstood me.
You have a uniform charge density p in what remains of the sphere. We can represent that as the sum of a uniform charge of density p over the complete sphere (cavity filled in) and a uniform charge density -p over the spherical cavity.
Oh got it. I calculated the total force on both and turns out one cancels. And it is uniform inside. Thanks. But tell me one thing does the now calculated force have the radial direction(towards the bigger sphere's radius)?
 
Zayan said:
does the now calculated force have the radial direction(towards the bigger sphere's radius)?
It depends where the electron is.
I'll call the centre of the sphere O and the centre of the cavity C.
If the electron is at E, define the vector ##\vec q## as OE and the vector ##\vec s## as CE.
- what is the force on it from the (complete) sphere centred on O?
- what is the force on it due to the ##-\rho## charge in the cavity?
- what is the vector sum of those forces ?
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top