MHB Motion of Particles in Uniform Gravitational Field

AI Thread Summary
Two particles in a uniform gravitational field move horizontally with initial velocities of 3 m/s and 4 m/s in opposite directions. Their vertical components of velocity increase due to gravity, and they become perpendicular after a time \( t \) calculated as \( t = \frac{\sqrt{v_1 v_2}}{g} \). The horizontal distances covered by each particle during this time are \( x_1 = v_1 t \) and \( x_2 = v_2 t \). The total separation between the particles when their velocities are perpendicular is given by \( x_1 + x_2 = (v_1 + v_2) \frac{\sqrt{v_1 v_2}}{g} \). This analysis provides a clear understanding of the motion of particles in a uniform gravitational field.
DrunkenOldFool
Messages
20
Reaction score
0
Two particles move in a uniform gravitational field with an acceleration $g$. At the initial moment the particles were located at one point and moved with velocities $v_1 = 3 \text{ms}^{-1}$ and $v_1 = 4 \text{ms}^{-1}$ horizontally in opposite directions. Find distance between the particles when their velocities become mutually perpendicular.
 
Mathematics news on Phys.org
DrunkenOldFool said:
Two particles move in a uniform gravitational field with an acceleration $g$. At the initial moment the particles were located at one point and moved with velocities $v_1 = 3 \text{ms}^{-1}$ and $v_1 = 4 \text{ms}^{-1}$ horizontally in opposite directions. Find distance between the particles when their velocities become mutually perpendicular.
The two horizontal components of velocity are constant, and the vertical components are always equal. Now draw a velocity diagram for when the two velocities are perpendicular, and solve the diagram for the vertical component of velocity (it should come to \(2 \sqrt{3}\) m/s if my scratch algebra and arithmetic are correct).

Now you can find the time \(t\) it took the vertical component to reach this value, and the separation is \(7t\) m.

CB
 
Last edited:
Let the velocities of the particles (say $\vec{v_{1}}'$ and $\vec{v_2 }'$) become perpendicular after time $t$. By equation of motion,

$$ \vec{v_{1}'}=\vec{v_{1}}+\vec{g}t \\ \vec{v_{2}'}=\vec{v_{2}}+\vec{g}t$$

As $\vec{v_1 ' }$ and $\vec{v_2 '}$ are perpendicular, we can write

$$ \begin{align*} \vec{v_1 ' } \cdot \vec{v_2 ' } &=0 \\ (\vec{v_{1}}+\vec{g}t) \cdot (\vec{v_{2}}+\vec{g}t) &= 0 \\ -v_1 v_2 +g^2 t^2 &=0 \\ t &= \frac{\sqrt{v_1 v_2}}{g}\end{align*}$$

Let $x_1$ and $x_2$ be the horizontal distances covered by particles 1 and 2 in time $t$ respectively. Note that the acceleration in horizontal direction is zero.

$$x_1 = v_1 t = v_1 \frac{\sqrt{v_1 v_2}}{g} \\ x_2 = v_2 t = v_2 \frac{\sqrt{v_1 v_2}}{g}$$

The total separation between the particles is

$$x_1+x_2= (v_1+v_2)\frac{\sqrt{v_1 v_2}}{g}$$
 
Last edited by a moderator:
This is my try.

View attachment 277

considering the triangle $ABC$,

$$\begin{align*}
\alpha &=90^\circ - \beta \\
\tan{\alpha} &= \tan (90^\circ -\beta ) \\
\tan{\alpha} &= \cot \beta \\
\frac{gt}{v_1}&=\frac{v_2}{gt}\\
g^2t^2 &=v_1\times v_2\\
\therefore t &= \frac{\sqrt{v_1v_2}}{g} \qquad since \; t>0 \\ \end{align*}

$$

the rest is as same as sbhatnagar's
 

Attachments

  • projectile.png
    projectile.png
    2 KB · Views: 110
Thank You!:)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top