- #1
LightPhoton
- 24
- 3
- TL;DR Summary
- How can we write that the amplitude coefficient of bra vector is complex conjugate of ket vector?
Consider a general ket ##|\psi\rangle##, expressed in the ## |\alpha_i\rangle## basis:
$$
|\psi\rangle = \sum \langle \alpha_i | \psi \rangle |\alpha_i\rangle,
$$
where## \langle \alpha_i | \alpha_j \rangle = \delta_{ij} ##,
with ## \delta_{ij} ## being the Kronecker delta function, and ## \langle \alpha_i | \psi \rangle ## being the probability amplitudes.
Now, how do we construct the bra vector ## \langle \psi | ##?
Starting from the normalization condition:
$$
\langle \psi | \psi \rangle = 1,
$$
we can expand ## \langle \psi | ## as:
$$
\langle \psi | = \sum \langle \psi | \alpha_i \rangle \langle \alpha_i |.
$$
Substituting this into the normalization:
$$
\langle \psi | \psi \rangle = \bigg( \sum \langle \psi | \alpha_i \rangle \langle \alpha_i | \bigg) \bigg( \sum \langle \alpha_i | \psi \rangle |\alpha_i\rangle \bigg),
$$
which simplifies to:
$$
\langle \psi | \psi \rangle = \sum \langle \psi | \alpha_i \rangle \langle \alpha_i | \psi \rangle = 1.
$$
Since the right-hand side (RHS) is a real number, the left-hand side (LHS) must also be real:
$$
\langle \psi | \alpha_i \rangle \langle \alpha_i | \psi \rangle \in \mathbb{R}.
$$
From this, how do we conclude that:
$$
\langle \psi | \alpha_i \rangle = \langle \alpha_i | \psi \rangle^* \tag{1}
$$
In classical physics, dot products are commutative, so ##\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} ## and both are real. Analogously, if ## \langle \psi | \alpha_i \rangle \in \mathbb{R} ##, we could conclude ##\langle \psi | \alpha_i \rangle = \langle \alpha_i | \psi \rangle##.
However, in the general case where these are complex numbers, we can use ##1##.
But is this the only justification for these rules? Or can we expand more?
$$
|\psi\rangle = \sum \langle \alpha_i | \psi \rangle |\alpha_i\rangle,
$$
where## \langle \alpha_i | \alpha_j \rangle = \delta_{ij} ##,
with ## \delta_{ij} ## being the Kronecker delta function, and ## \langle \alpha_i | \psi \rangle ## being the probability amplitudes.
Now, how do we construct the bra vector ## \langle \psi | ##?
Starting from the normalization condition:
$$
\langle \psi | \psi \rangle = 1,
$$
we can expand ## \langle \psi | ## as:
$$
\langle \psi | = \sum \langle \psi | \alpha_i \rangle \langle \alpha_i |.
$$
Substituting this into the normalization:
$$
\langle \psi | \psi \rangle = \bigg( \sum \langle \psi | \alpha_i \rangle \langle \alpha_i | \bigg) \bigg( \sum \langle \alpha_i | \psi \rangle |\alpha_i\rangle \bigg),
$$
which simplifies to:
$$
\langle \psi | \psi \rangle = \sum \langle \psi | \alpha_i \rangle \langle \alpha_i | \psi \rangle = 1.
$$
Since the right-hand side (RHS) is a real number, the left-hand side (LHS) must also be real:
$$
\langle \psi | \alpha_i \rangle \langle \alpha_i | \psi \rangle \in \mathbb{R}.
$$
From this, how do we conclude that:
$$
\langle \psi | \alpha_i \rangle = \langle \alpha_i | \psi \rangle^* \tag{1}
$$
In classical physics, dot products are commutative, so ##\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} ## and both are real. Analogously, if ## \langle \psi | \alpha_i \rangle \in \mathbb{R} ##, we could conclude ##\langle \psi | \alpha_i \rangle = \langle \alpha_i | \psi \rangle##.
However, in the general case where these are complex numbers, we can use ##1##.
But is this the only justification for these rules? Or can we expand more?
Last edited by a moderator: