Muhammad's question via email about an Inverse Fourier Transform

In summary, the inverse Fourier transform of the given function is $\displaystyle \begin{align*} \mathrm{e}^{-5\mathrm{i}\,t} \mathrm{e}^{-2\left| t \right| } \left[ \textrm{sgn}\,{(t)} - 1 \right] \end{align*}$.
  • #1
Prove It
Gold Member
MHB
1,465
24
Find the Inverse Fourier Transform of $\displaystyle \begin{align*} \frac{2\mathrm{i}\,\omega}{\omega ^2 + 10\omega + 29} \end{align*}$.

Completing the square gives

$\displaystyle \begin{align*} \frac{2\mathrm{i}\,\omega}{\omega ^2 + 10\omega + 29} &= \frac{2\mathrm{i}\,\omega}{ \omega ^2 + 10\omega + 5^2 - 5^2 + 29} \\ &= \frac{2\mathrm{i}\,\omega}{ \left( \omega + 5 \right) ^2 + 4 } \\ &= \frac{2\mathrm{i}\,\omega}{ \left( \omega + 5 \right) ^2 + 2^2 } \\ &= \frac{ 2\mathrm{i} \left( \omega + 5 \right) - 10\mathrm{i} }{ \left( \omega + 5 \right) ^2 + 2^2 } \\ &= \frac{2\mathrm{i} \left( \omega + 5 \right) }{ \left( \omega + 5 \right) ^2 + 2^2} - \frac{10\mathrm{i}}{ \left( \omega + 5 \right) ^2 + 2^2 } \end{align*}$

Now applying the first shift theorem: $\displaystyle \begin{align*} \mathcal{F} ^{-1} \left\{ F \left( \omega - u \right) \right\} = \mathrm{e}^{\mathrm{i}\,u\,t} \mathcal{F}^{-1} \left\{ F \left( \omega \right) \right\} \end{align*}$ we find

$\displaystyle \begin{align*} \mathcal{F}^{-1} \left\{ \frac{2\mathrm{i}\,\left( \omega + 5 \right) }{ \left( \omega + 5 \right) ^2 + 2^2 } - \frac{10\mathrm{i}}{ \left( \omega + 5 \right) ^2 + 2^2 } \right\} &= \mathrm{e}^{-5\mathrm{i}\,t} \mathcal{F}^{-1} \left\{ \frac{2\mathrm{i}\,\omega}{\omega ^2 + 2^2 } - \frac{10\mathrm{i}}{ \omega ^2 + 2^2 } \right\} \end{align*}$

Now the rest is applying the following rules:

$\displaystyle \begin{align*} \mathcal{F}^{-1} \left\{ \frac{-2\mathrm{i}\,\omega}{ \omega ^2 + a^2 } \right\} = \textrm{sgn}\,{(t)}\,\mathrm{e}^{-a\, \left| t \right| } \end{align*}$

and

$\displaystyle \begin{align*} \mathcal{F}^{-1} \left\{ \frac{2a}{\omega ^2 + a^2 } \right\} = \mathrm{e}^{-a\,\left| t \right| } \end{align*}$
 
Last edited:
Mathematics news on Phys.org
  • #2


Where $\textrm{sgn}\,{(t)}$ is the sign function.

Therefore, the inverse Fourier transform of the given function is:

$\displaystyle \begin{align*} \mathcal{F}^{-1} \left\{ \frac{2\mathrm{i}\,\omega}{\omega ^2 + 10\omega + 29} \right\} &= \mathrm{e}^{-5\mathrm{i}\,t} \left[ \textrm{sgn}\,{(t)}\,\mathrm{e}^{-2\left| t \right| } - \mathrm{e}^{-2\left| t \right| } \right] \\ &= \mathrm{e}^{-5\mathrm{i}\,t} \mathrm{e}^{-2\left| t \right| } \left[ \textrm{sgn}\,{(t)} - 1 \right] \end{align*}$

Thus, the inverse Fourier transform of $\displaystyle \begin{align*} \frac{2\mathrm{i}\,\omega}{\omega ^2 + 10\omega + 29} \end{align*}$ is $\displaystyle \begin{align*} \mathrm{e}^{-5\mathrm{i}\,t} \mathrm{e}^{-2\left| t \right| } \left[ \textrm{sgn}\,{(t)} - 1 \right] \end{align*}$.
 

FAQ: Muhammad's question via email about an Inverse Fourier Transform

What does an Inverse Fourier Transform do?

An Inverse Fourier Transform is a mathematical operation that takes a signal in the frequency domain and converts it back into the time domain. It essentially reverses the process of a Fourier Transform, which converts a signal from the time domain into the frequency domain.

Why is an Inverse Fourier Transform important?

An Inverse Fourier Transform is important because it allows us to analyze signals in both the time and frequency domains. This is useful in many scientific fields, including signal processing, physics, and engineering.

How is an Inverse Fourier Transform performed?

To perform an Inverse Fourier Transform, you first need to have the frequency spectrum of the signal, which can be obtained through a Fourier Transform. Then, you use the inverse transform equation, which involves complex numbers and integrals, to convert the signal back into the time domain.

What are some applications of an Inverse Fourier Transform?

The Inverse Fourier Transform has many applications, including audio and image compression, noise reduction, and filtering in signal processing. It is also used in medical imaging, such as MRI scans, to reconstruct images from the frequency domain.

Are there any limitations to an Inverse Fourier Transform?

One limitation of an Inverse Fourier Transform is that it assumes the signal is continuous and infinite. In reality, most signals are discrete and have a finite length, which can lead to errors in the reconstruction process. Additionally, the inverse transform can be computationally expensive for large datasets.

Similar threads

Back
Top