Muhammed's question via email about an Inverse Fourier Transform (2)

In summary: H}(t) - i\,t\,\mathrm{e}^{-t} \,\mathrm{sin}(2t) \,\mathrm{H}(t) - 12 \,\mathrm{e}^{-3 \left| t \right| }$.
  • #1
Prove It
Gold Member
MHB
1,465
24
Find the Inverse Fourier Transform of $\displaystyle \begin{align*} \frac{4}{ \left( 1 + \mathrm{i}\,\omega + 2\mathrm{i} \right) ^2 } + \frac{6\mathrm{i}\,\omega}{ \left( 9 + \omega ^2 \right) ^2 } \end{align*}$

Here we will use the following transforms: $\displaystyle \begin{align*} \mathcal{F}^{-1} \left\{ \frac{n!}{ \left( a + \mathrm{i}\,\omega \right) ^{n+1} } \right\} = t^n\,\mathrm{e}^{-a\,t}\,\mathrm{H}(t) \end{align*}$ and $\displaystyle \begin{align*} \mathcal{F}^{-1} \left\{ \frac{-4\mathrm{i}\,a\,\omega}{ \left( a^2 + \omega ^2 \right) ^2 } = t\,\mathrm{e}^{-a \, \left| t \right| } \right\} \end{align*}$. With some rearranging we get...

$\displaystyle \begin{align*} \frac{4}{ \left( 1 + \mathrm{i}\,\omega + 2\mathrm{i} \right) ^2 } + \frac{6\mathrm{i}\,\omega}{ \left( 9 + \omega ^2 \right) ^2 } &= 4 \left\{ \frac{1!}{ \left[ \left( 1 + 2\mathrm{i} \right) + \mathrm{i}\,\omega \right] ^2 } \right\} - \frac{1}{2} \left[ \frac{-4 \cdot 3\mathrm{i}\,\omega }{ \left( 3^2 + \omega ^2 \right) ^2 } \right] \end{align*}$

Both terms are now in forms where the Inverse Fourier Transform can be found.
 
Mathematics news on Phys.org
  • #2
Using the first transform, we get:

$\displaystyle \begin{align*} \mathcal{F}^{-1} \left\{ \frac{1!}{ \left[ \left( 1 + 2\mathrm{i} \right) + \mathrm{i}\,\omega \right] ^2 } \right\} &= t\,\mathrm{e}^{- \left( 1 + 2\mathrm{i} \right)\,t} \,\mathrm{H}(t) \\ &= t\,\mathrm{e}^{-t} \,\mathrm{e}^{-2\mathrm{i}\,t} \,\mathrm{H}(t) \\ &= t\,\mathrm{e}^{-t} \,\mathrm{cos}(2t) \,\mathrm{H}(t) - i\,t\,\mathrm{e}^{-t} \,\mathrm{sin}(2t) \,\mathrm{H}(t) \end{align*}$

And using the second transform, we get:

$\displaystyle \begin{align*} \mathcal{F}^{-1} \left\{ \frac{-4 \cdot 3\mathrm{i}\,\omega }{ \left( 3^2 + \omega ^2 \right) ^2 } \right\} &= -12 \,\mathrm{e}^{-3 \left| t \right| } \end{align*}$

Putting these two terms together, we get the inverse Fourier Transform of the given function as:

$\displaystyle \begin{align*} \mathcal{F}^{-1} \left\{ \frac{4}{ \left( 1 + \mathrm{i}\,\omega + 2\mathrm{i} \right) ^2 } + \frac{6\mathrm{i}\,\omega}{ \left( 9 + \omega ^2 \right) ^2 } \right\} &= t\,\mathrm{e}^{-t} \,\mathrm{cos}(2t) \,\mathrm{H}(t) - i\,t\,\mathrm{e}^{-t} \,\mathrm{sin}(2t) \,\mathrm{H}(t) - 12 \,\mathrm{e}^{-3 \left| t \right| } \end{align*}$

In conclusion, the inverse Fourier Transform of the given
 

FAQ: Muhammed's question via email about an Inverse Fourier Transform (2)

What is an Inverse Fourier Transform?

An Inverse Fourier Transform is a mathematical operation that converts a signal from the frequency domain to the time domain. It essentially takes the frequency components of a signal and reconstructs it into a time-domain signal.

What is the use of Inverse Fourier Transform?

The Inverse Fourier Transform is used to analyze signals and extract information about their frequency components. It is commonly used in fields such as signal processing, image and audio compression, and data analysis.

How is an Inverse Fourier Transform calculated?

The Inverse Fourier Transform is calculated using a mathematical formula that involves integrating the signal's frequency components. This formula is known as the Inverse Fourier Transform formula and is widely used in signal processing applications.

What is the difference between Fourier Transform and Inverse Fourier Transform?

Fourier Transform and Inverse Fourier Transform are inverse operations of each other. Fourier Transform converts a signal from the time domain to the frequency domain, while Inverse Fourier Transform converts it back from the frequency domain to the time domain.

What are some real-life applications of Inverse Fourier Transform?

Inverse Fourier Transform is used in various applications such as audio and image processing, communication systems, and medical imaging. It is also used in fields like finance, weather forecasting, and physics for data analysis and modeling.

Similar threads

Back
Top