- #1
Dembadon
Gold Member
- 659
- 89
I would like to check my work with you all.
Let
[itex]\vec{u} = 2\vec{i}+\vec{j}[/itex],
[itex]\vec{v} = \vec{i}+\vec{j}[/itex], and
[itex]\vec{w} = \vec{i}-\vec{j}[/itex].
Find scalars a and b such that [itex]\vec{u} =[/itex] a[itex]\vec{v}+[/itex] b[itex]\vec{w}[/itex].
Standard Unit Vectors:
[itex]\vec{i} = <1,0>[/itex].
[itex]\vec{j} = <0,1>[/itex].
Compute vectors:
[itex]\vec{u} = 2<1,0>+<0,1>=<2,1>[/itex].
[itex]\vec{v} = <1,0>+<0,1>=<1,1>[/itex].
[itex]\vec{w} = <1,0>-<0,1>=<1,-1>[/itex].
Setup Scalars:
[itex]<2,1> = a<1,1>+b<1,-1>[/itex].
[itex]<2,1> = <a,a>+<b,-b>[/itex].
[itex]<2,1> = <a+b,a-b>[/itex].
Find Scalars:
[itex]a+b = 2[/itex].
[itex]a-b = 1[/itex].
Thus, a = 3/2 and b = 1/2.
Final answer:
[itex]\vec{u} = \frac{3}{2}\vec{v}+\frac{1}{2}\vec{w}[/itex].
Note: Sorry my vector arrows aren't lining-up very well.
Homework Statement
Let
[itex]\vec{u} = 2\vec{i}+\vec{j}[/itex],
[itex]\vec{v} = \vec{i}+\vec{j}[/itex], and
[itex]\vec{w} = \vec{i}-\vec{j}[/itex].
Find scalars a and b such that [itex]\vec{u} =[/itex] a[itex]\vec{v}+[/itex] b[itex]\vec{w}[/itex].
Homework Equations
Standard Unit Vectors:
[itex]\vec{i} = <1,0>[/itex].
[itex]\vec{j} = <0,1>[/itex].
The Attempt at a Solution
Compute vectors:
[itex]\vec{u} = 2<1,0>+<0,1>=<2,1>[/itex].
[itex]\vec{v} = <1,0>+<0,1>=<1,1>[/itex].
[itex]\vec{w} = <1,0>-<0,1>=<1,-1>[/itex].
Setup Scalars:
[itex]<2,1> = a<1,1>+b<1,-1>[/itex].
[itex]<2,1> = <a,a>+<b,-b>[/itex].
[itex]<2,1> = <a+b,a-b>[/itex].
Find Scalars:
[itex]a+b = 2[/itex].
[itex]a-b = 1[/itex].
Thus, a = 3/2 and b = 1/2.
Final answer:
[itex]\vec{u} = \frac{3}{2}\vec{v}+\frac{1}{2}\vec{w}[/itex].
Note: Sorry my vector arrows aren't lining-up very well.