- #1
22990atinesh
- 143
- 1
Suppose we have 'n' Stars and 'k' bins. We have to distribute 'n' stars in 'k' bins (using k-1 bars) such that bins can be empty. We can do this in ##\binom {n+k-1}{k-1}## = ##\binom {n+k-1}{n}## ways. But Sometimes we use another notation ##\left({{k}\choose {n}}\right)## to represent ##\binom {n+k-1}{k-1}##, Which says 'k multichoose n'. But normally as n > k, then how can we choose more objects from less objects i.e. n from k. So, I think It has to be like this ##\left({{n}\choose {k}}\right)##.