- #1
Kashmir
- 468
- 74
Given vector operators as
$$\mathbf{A} = (A_{1}, A_{2} ,A_{3}) $$
$$\mathbf{B} = (B_{1}, B_{2} ,B_{3}) $$
$$\mathbf{C} = (C_{1}, C_{2} ,C_{3}) $$
I know that for two vector operators $$\begin{equation}
\mathbf{Q} \mathbf{P} = \sum_{\alpha = 1}^{3} Q_{\alpha} P_{\alpha}
\end{equation}$$
What is $$\mathbf{A}\mathbf{B}\mathbf{C}$$ in component form?
$$\mathbf{A} = (A_{1}, A_{2} ,A_{3}) $$
$$\mathbf{B} = (B_{1}, B_{2} ,B_{3}) $$
$$\mathbf{C} = (C_{1}, C_{2} ,C_{3}) $$
I know that for two vector operators $$\begin{equation}
\mathbf{Q} \mathbf{P} = \sum_{\alpha = 1}^{3} Q_{\alpha} P_{\alpha}
\end{equation}$$
What is $$\mathbf{A}\mathbf{B}\mathbf{C}$$ in component form?